Dynamical Backaction in an Ultrahigh-Finesse Fiber-Based Microcavity

The use of low-dimensional objects in the field of cavity optomechanics is limited by their low scattering cross section compared to the size of the optical cavity mode. Fiber-based Fabry-Pérot microcavities can feature tiny mode cross sections and still maintain a high finesse, boosting the light-matter interaction and thus enabling the sensitive detection of the displacement of minute objects. Here we present such an ultrasensitive microcavity setup with the highest finesse reported so far in loaded fiber cavities, F = 195 000 . We are able to position-tune the static optomechanical coupling to a silicon nitride membrane stripe, reaching frequency pull parameters of up to | G/ 2 π | = 1 GHz nm − 1 . We also demonstrate radiation pressure backaction in the regime of an ultrahigh finesse up to F = 165 000 .

[1]  J. Reichel,et al.  Mapping the Cavity Optomechanical Interaction with Subwavelength-Sized Ultrasensitive Nanomechanical Force Sensors , 2021, Physical Review X.

[2]  A. Schliesser,et al.  Magnetic resonance imaging with optical preamplification and detection , 2019, Scientific Reports.

[3]  P. McEuen,et al.  Real-time vibrations of a carbon nanotube , 2019, Nature.

[4]  Lukas Novotny,et al.  Cold Damping of an Optically Levitated Nanoparticle to Microkelvin Temperatures. , 2018, Physical review letters.

[5]  A. Schliesser,et al.  Continuous force and displacement measurement below the standard quantum limit , 2018, Nature Physics.

[6]  Jacob M. Taylor,et al.  Quantum correlations from a room-temperature optomechanical cavity , 2017, Science.

[7]  A. Bachtold,et al.  Optomechanics with a hybrid carbon nanotube resonator , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[8]  R. W. Simmonds,et al.  Demonstration of Efficient Nonreciprocity in a Microwave Optomechanical Circuit , 2017, 1703.05269.

[9]  T. Kippenberg,et al.  Nonreciprocal reconfigurable microwave optomechanical circuit , 2016, Nature Communications.

[10]  N. Flowers-Jacobs,et al.  Superfluid Brillouin optomechanics , 2016, Nature Physics.

[11]  Joshua A. Slater,et al.  Non-classical correlations between single photons and phonons from a mechanical oscillator , 2015, Nature.

[12]  J. P. Moura,et al.  Mechanical Resonators for Quantum Optomechanics Experiments at Room Temperature. , 2015, Physical review letters.

[13]  J. Sankey,et al.  Ultralow-Noise SiN Trampoline Resonators for Sensing and Optomechanics , 2015, 1511.01769.

[14]  J. Teufel,et al.  Quantum Nondemolition Measurement of a Nonclassical State of a Massive Object , 2015, Physical review. X.

[15]  D. Meschede,et al.  High-finesse fiber Fabry–Perot cavities: stabilization and mode matching analysis , 2015, 1508.05289.

[16]  Zhou Meng,et al.  Ultra-narrow linewidth measurement based on Voigt profile fitting. , 2015, Optics express.

[17]  Vibhor Singh,et al.  Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity. , 2014, Nature nanotechnology.

[18]  R. Blatt,et al.  Integrated fiber-mirror ion trap for strong ion-cavity coupling. , 2013, The Review of scientific instruments.

[19]  T. Palomaki,et al.  Entangling Mechanical Motion with Microwave Fields , 2013, Science.

[20]  Dong Liu,et al.  Ultrasensitive force detection with a nanotube mechanical resonator. , 2013, Nature nanotechnology.

[21]  I. Favero,et al.  Cavity-enhanced optical detection of carbon nanotube Brownian motion , 2012, 1211.1608.

[22]  C. Regal,et al.  Observation of Radiation Pressure Shot Noise on a Macroscopic Object , 2012, Science.

[23]  P. Tombesi,et al.  Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature , 2012, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[24]  N. Flowers-Jacobs,et al.  Fiber-cavity-based optomechanical device , 2012, 1206.3558.

[25]  C. Molinelli,et al.  Optomechanical sideband cooling of a thin membrane within a cavity , 2012, 1206.0614.

[26]  V. Aksyuk,et al.  A microelectromechanically controlled cavity optomechanical sensing system , 2012, 1204.1017.

[27]  S. Bhave,et al.  Z-axis optomechanical accelerometer , 2012, 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS).

[28]  G. Giuseppe,et al.  Quantum dynamics of an optical cavity coupled to a thin semitransparent membrane: Effect of membrane absorption , 2011 .

[29]  M. Aspelmeyer,et al.  Laser cooling of a nanomechanical oscillator into its quantum ground state , 2011, Nature.

[30]  J. Teufel,et al.  Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.

[31]  G. Solomon,et al.  Ultra-high finesse, low mode volume Fabry-Perot microcavity , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[32]  Tilo Steinmetz,et al.  A fiber Fabry–Perot cavity with high finesse , 2010, 1005.0067.

[33]  H. Kimble,et al.  Cavity optomechanics with stoichiometric SiN films. , 2009, Physical review letters.

[34]  A. M. Jayich,et al.  Dispersive optomechanics: a membrane inside a cavity , 2008, 0805.3723.

[35]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[36]  A. M. Jayich,et al.  High quality mechanical and optical properties of commercial silicon nitride membranes , 2007, 0711.2263.

[37]  Ivan Favero,et al.  Cavity cooling of a nanomechanical resonator by light scattering , 2007, 0707.3117.

[38]  S. Girvin,et al.  Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane , 2007, Nature.

[39]  T. Kippenberg,et al.  Theory of ground state cooling of a mechanical oscillator using dynamical backaction. , 2007, Physical review letters.

[40]  S. Girvin,et al.  Quantum theory of cavity-assisted sideband cooling of mechanical motion. , 2007, Physical review letters.

[41]  S. Suh,et al.  Refractive index properties of SiN thin films and fabrication of SiN optical waveguide , 2006 .

[42]  Charalambos C. Katsidis,et al.  General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. , 2002, Applied optics.

[43]  Theodor W. Hänsch,et al.  A compact grating-stabilized diode laser system for atomic physics , 1995 .

[44]  P. Meystre,et al.  Optical bistability and mirror confinement induced by radiation pressure , 1983 .

[45]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[46]  J. J. Olivero,et al.  Empirical fits to the Voigt line width: A brief review , 1977 .

[47]  R. A. Waldron,et al.  Perturbation theory of resonant cavities , 1960 .