Obtaining bimodal microstructure in laser melting deposited Ti–5Al–5Mo–5V–1Cr–1Fe near β titanium alloy

[1]  H. M. Wang,et al.  Subtransus triplex heat treatment of laser melting deposited Ti–5Al–5Mo–5V–1Cr–1Fe near β titanium alloy , 2014 .

[2]  H. M. Wang,et al.  Microstructure and tensile properties of laser melting deposited Ti–5Al–5Mo–5V–1Cr–1Fe near β titanium alloy , 2013 .

[3]  Changmeng Liu,et al.  Microstructural characterization of laser melting deposited Ti–5Al-5Mo–5V–1Cr–1Fe near β titanium alloy , 2013 .

[4]  H. Jiang,et al.  Microstructure and high cycle fatigue fracture surface of a Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy , 2013 .

[5]  Raymond F. Wegman,et al.  Titanium and Titanium Alloys , 2013 .

[6]  K. Zhou,et al.  Relationship between lamellar α evolution and flow behavior during isothermal deformation of Ti–5Al–5Mo–5V–1Cr–1Fe near β titanium alloy , 2012 .

[7]  J. Kruth,et al.  Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties , 2012 .

[8]  Huiping Tang,et al.  Microstructure evolution of sub-critical annealed laser deposited Ti–6Al–4V alloy , 2012 .

[9]  F. C. Campbell Phase Diagrams: Understanding the Basics , 2012 .

[10]  Ming Gao,et al.  The microstructure and mechanical properties of deposited-IN718 by selective laser melting , 2012 .

[11]  Fude Wang Direct Laser Fabrication of Ti-25V-15Cr-2Al-0.2C (wt pct) Burn-Resistant Titanium Alloy , 2012, Metallurgical and Materials Transactions A.

[12]  Christoph Leyens,et al.  Mechanical properties of additive manufactured titanium (Ti–6Al–4V) blocks deposited by a solid-state laser and wire , 2011 .

[13]  Yulin Hao,et al.  Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy , 2011 .

[14]  E. Chlebus,et al.  Microstructure and mechanical behaviour of Ti―6Al―7Nb alloy produced by selective laser melting , 2011 .

[15]  Weidong Huang,et al.  The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718 , 2011 .

[16]  H. M. Wang,et al.  Microstructure and mechanical properties of rapid directionally solidified Ni-base superalloy Rene′41 by laser melting deposition manufacturing , 2010 .

[17]  Yang Wang,et al.  Microstructure and mechanical properties of laser melting deposited 1Cr12Ni2WMoVNb steel , 2010 .

[18]  J. Kruth,et al.  A study of the microstructural evolution during selective laser melting of Ti–6Al–4V , 2010 .

[19]  H. M. Wang,et al.  Effect of annealing temperature on the notch impact toughness of a laser melting deposited titanium alloy Ti–4Al–1.5Mn , 2010 .

[20]  Xin Lin,et al.  Heat-treated microstructure and mechanical properties of laser solid forming Ti-6Al-4V alloy , 2009 .

[21]  Hua-ming Wang,et al.  Microstructure and tensile properties of laser melting deposited TiC/TA15 titanium matrix composites , 2009 .

[22]  J. Mei,et al.  Microstructure and properties of a laser fabricated burn-resistant Ti alloy , 2004 .

[23]  Xinhua Wu,et al.  Direct laser fabrication and microstructure of a burn-resistant Ti alloy , 2002 .

[24]  S. L. Semiatin,et al.  The laser additive manufacture of Ti-6Al-4V , 2001 .

[25]  Francis H. Froes,et al.  Producing titanium aerospace components from powder using laser forming , 2000 .

[26]  William D. Callister,et al.  Materials Science and Engineering: An Introduction , 1985 .

[27]  F. Froes,et al.  Effect of α-phase morphology and distribution on the tensile ductility of a metastable beta titanium alloy , 1977 .

[28]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .