Model reduction of hybrid switched systems

. A hybrid dynamical system is a system described by both differential equations (contin-uous flows) and difference equations (discrete transitions). It has the benefit of allowing more flexible modeling of dynamic phenomena, including physical systems with impact such as the bouncing ball, switched systems such as the thermostat, and even the internet congestion as examples. Hybrid dynamical systems pose a challenge since almost all reduction methods cannot be directly applied. Here we show some recent developments in the area of model reduction of switched dynamical systems. RÉSUMÉ. Un système dynamique hybride est un système décrit par des équations différentielles (flux continus) et des équations de différences (transitions discrètes). L’utilisation de ce genre de systèmes permet une modélisation plus souple des phénomènes dynamiques, y compris les systèmes physiques avec impact comme la balle bondissante, les systèmes commutés comme le thermostat, et même la congestion de l’internet comme simples exemples. Les systèmes dynamiques hybrides constituent un défi, car presque toutes les méthodes de réduction ne peuvent pas être appliquées directement. Nous montrons ici quelques idées récentes pour la réduction des systèmes dynamiques hybrides commutés.

[1]  Antoine Girard,et al.  Approximate bisimulation relations for constrained linear systems , 2007, Autom..

[2]  Paulo Tabuada,et al.  Bisimulation relations for dynamical, control, and hybrid systems , 2005, Theor. Comput. Sci..

[3]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[4]  S. Ge,et al.  Switched Linear Systems: Control and Design , 2005 .

[5]  João Pedro Hespanha,et al.  Uniform stability of switched linear systems: extensions of LaSalle's Invariance Principle , 2004, IEEE Transactions on Automatic Control.

[6]  Younes Chahlaoui,et al.  Low-rank approximation and model reduction. , 2003 .

[7]  Jun Zhao,et al.  Hybrid control for global stabilization of the cart-pendulum system , 2001, Autom..

[8]  A. Morse,et al.  Stability of switched systems with average dwell-time , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[9]  I. Kolmanovsky,et al.  Hybrid feedback laws for a class of cascade nonlinear control systems , 1996, IEEE Trans. Autom. Control..

[10]  Roger W. Brockett,et al.  Electrical networks containing controlled switches , 1974 .

[11]  Paul Van Dooren,et al.  Model Reduction of Time-Varying Systems , 2005 .

[12]  A. J. van der Schaft,et al.  Equivalence of dynamical systems by bisimulation , 2004, IEEE Transactions on Automatic Control.

[13]  Alexander Leonessa,et al.  Nonlinear system stabilization via hierarchical switching control , 2001, IEEE Trans. Autom. Control..