Epitaxial Growth of PbSe Quantum Dots on MoS2 Nanosheets and their Near‐Infrared Photoresponse

A facile one-pot synthesis of hybrid materials consisting of PbSe quantum dots (QDs) that grow epitaxially on MoS2 nanoflakes resulting in three equivalent orientation variants of the PbSe QDs with respect to the MoS2 lattice is demonstrated. The epitaxial growth and cross-sectional high-resolution transmission electron microscopy (HRTEM) investigations verify a direct and linker-free contact between the quantum dots and the transition metal dichalcogenide (TMD) nanoflakes, while maintaining surface passivation of the PbSe with oleic acid ligands on the outside. Solution-processed photodetectors based on PbSe-MoS2 hybrids exhibit stable photoconduction when illuminated with near-IR light (wavelength > 1200 nm) without any laborious ligand-exchange steps. Flexible devices fabricated on polyethylene terephthalate (PET) substrates show excellent stability upon repeated bending. These hybrid materials are air-stable and solution-processable at low temperatures and thus promising for low-cost flexible near-IR photodetectors.

[1]  Edward H. Sargent,et al.  Sensitive solution-processed Bi2S3 nanocrystalline photodetectors. , 2008, Nano letters.

[2]  Peng,et al.  Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. , 1996, Physical review. B, Condensed matter.

[3]  G. Konstantatos,et al.  Hybrid graphene-quantum dot phototransistors with ultrahigh gain. , 2011, Nature nanotechnology.

[4]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[5]  J. Hou,et al.  Dramatically enhanced photoresponse of reduced graphene oxide with linker-free anchored CdSe nanoparticles. , 2010, ACS nano.

[6]  Yanli Chang,et al.  A Facile One‐step Method to Produce Graphene–CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials , 2010, Advanced materials.

[7]  Jayanta K. Baral,et al.  Controlled Fabrication of PbS Quantum‐Dot/Carbon‐Nanotube Nanoarchitecture and its Significant Contribution to Near‐Infrared Photon‐to‐Current Conversion , 2011 .

[8]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[9]  H. Zeng,et al.  Two-dimensional semiconductors: recent progress and future perspectives , 2013 .

[10]  Oleksandr Voznyy,et al.  All‐Inorganic Colloidal Quantum Dot Photovoltaics Employing Solution‐Phase Halide Passivation , 2012, Advanced materials.

[11]  Feng Yan,et al.  Infrared Photodetectors Based on CVD‐Grown Graphene and PbS Quantum Dots with Ultrahigh Responsivity , 2012, Advanced materials.

[12]  Zhiyuan Zeng,et al.  Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets , 2013, Nature Communications.

[13]  Controlled In Situ PbSe Quantum Dot Growth around Single-Walled Carbon Nanotubes: A Noncovalent PbSe-SWNT Hybrid Structure , 2013 .

[14]  A. Menzel,et al.  Shape-dependent activity of platinum array catalyst. , 2009, Journal of the American Chemical Society.

[15]  Dmitri V Talapin,et al.  PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors , 2005, Science.

[16]  A. Meerschaut,et al.  CHALCOGENIDE MISFIT LAYER COMPOUNDS , 1995 .

[17]  Xiaogan Liang,et al.  MoS2 transistors fabricated via plasma-assisted nanoprinting of few-layer MoS2 flakes into large-area arrays. , 2013, ACS nano.

[18]  G. Konstantatos,et al.  Ultrasensitive solution-cast quantum dot photodetectors , 2006, Nature.

[19]  H. Zandbergen,et al.  Energetics of polar and nonpolar facets of PbSe nanocrystals from theory and experiment. , 2010, ACS nano.

[20]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[21]  Kinam Kim,et al.  High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals , 2012, Nature Communications.

[22]  G. Galli,et al.  Electronic properties of MoS2 nanoparticles , 2007 .

[23]  Shun Mao,et al.  Selective deposition of CdSe nanoparticles on reduced graphene oxide to understand photoinduced charge transfer in hybrid nanostructures. , 2011, ACS applied materials & interfaces.

[24]  S. Min,et al.  MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap. , 2012, Nano letters.

[25]  Maurizio Prato,et al.  Decorating carbon nanotubes with metal or semiconductor nanoparticles , 2007 .

[26]  Stefan Gamerith,et al.  Inkjet‐Printed Nanocrystal Photodetectors Operating up to 3 μm Wavelengths , 2007 .

[27]  Lain-Jong Li,et al.  High‐Gain Phototransistors Based on a CVD MoS2 Monolayer , 2013, Advanced materials.

[28]  E. Spiecker,et al.  Advantages of aberration correction for HRTEM investigation of complex layer compounds , 2010, Journal of microscopy.

[29]  Kyung-Sang Cho,et al.  Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. , 2005, Journal of the American Chemical Society.

[30]  Hugen Yan,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[31]  David C. Johnson,et al.  Structure of Turbostratically Disordered Misfit Layer Compounds [(PbSe)0.99]1[WSe2]1, [(PbSe)1.00]1[MoSe2]1, and [(SnSe)1.03]1[MoSe2]1 , 2012 .

[32]  Stanislaus S. Wong,et al.  Carbon nanotube-nanocrystal heterostructures. , 2009, Chemical Society reviews.

[33]  Jin-Sil Choi,et al.  Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. , 2006, Angewandte Chemie.

[34]  L. Marks,et al.  Oriented catalytic platinum nanoparticles on high surface area strontium titanate nanocuboids. , 2011, Nano letters.

[35]  P. Kamat,et al.  Fortification of CdSe quantum dots with graphene oxide. Excited state interactions and light energy conversion. , 2012, Journal of the American Chemical Society.

[36]  S. Amelinckx,et al.  Incommensurate misfit layer compounds of the type “MTS3” (M = Sn, Pb, Bi, rare earth elements; T = Nb, Ta): A study by means of electron microscopy , 1990 .

[37]  D. Ginger,et al.  Charge injection and transport in films of CdSe nanocrystals , 2000 .

[38]  Larissa Levina,et al.  Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. , 2009, Nature nanotechnology.

[39]  Jinhuai Liu,et al.  Walnut-like CdS micro-particles/single-walled carbon nanotube hybrids: one-step hydrothermal route to synthesis and their properties , 2010 .

[40]  S. Bauer,et al.  Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays , 2009, Science.

[41]  Ying Wang,et al.  Photoconductivity of CdS nanocluster-doped polymers , 1992 .

[42]  Hongzheng Chen,et al.  Graphene-like two-dimensional materials. , 2013, Chemical reviews.

[43]  T. Someya,et al.  Flexible organic transistors and circuits with extreme bending stability. , 2010, Nature materials.

[44]  Dirk Poelman,et al.  Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots , 2007 .

[45]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[46]  M. Bawendi,et al.  Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals , 1998 .

[47]  R. Koole,et al.  The hidden role of acetate in the PbSe nanocrystal synthesis. , 2006, Journal of the American Chemical Society.

[48]  E. Krasovskii,et al.  Charge transfer in misfit layered compounds , 2003 .

[49]  G. Wiegers Misfit layer compounds : Structures and physical properties , 1996 .

[50]  M. Ozkan,et al.  Photoinduced Electron Transfer Between Pyridine Coated Cadmium Selenide Quantum Dots and Single Sheet Graphene , 2013 .

[51]  G. Konstantatos,et al.  Nanostructured materials for photon detection. , 2010, Nature nanotechnology.

[52]  Lin Gan,et al.  Understanding Charge Transfer at PbS‐Decorated Graphene Surfaces toward a Tunable Photosensor , 2012, Advanced materials.

[53]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[54]  Ming Lin,et al.  High‐Performance Broadband Photodetector Using Solution‐Processible PbSe–TiO2–Graphene Hybrids , 2012, Advanced materials.

[55]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[56]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[57]  Soon Cheol Hong,et al.  High‐Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared , 2012, Advanced materials.