Leveraging tourist trajectory data for effective destination planning and management: A new heuristic approach

Abstract Understanding tourist movements provides insights for destination planning, service design and marketing. The key challenge is to develop a tool that can capture the value in the tourist mobility data. This study presents a new heuristic approach that combines adaptive spatial clustering with frequent pattern mining to improve the performance and efficiency of trajectory data analytics. The aim is to fully leverage the semantic information in the tourist data and the duration that tourists stay at an attraction. Anonymous mobile positioning data from 741 tourists to one of China's leading destinations are used to illustrate the application of the new analytical approach. The results reveal a four-level destination spatial structure ranging from core to peripheral areas. The findings provide practical implications for facilitating intra-destination cooperation and optimizing destination resource allocation and service design.

[1]  Yang Yang,et al.  Spatial Distribution of Tourist Flows to China's Cities , 2013 .

[2]  Hwan-Seung Yong,et al.  Mining Spatio-Temporal Patterns in Trajectory Data , 2010, J. Inf. Process. Syst..

[3]  Bob McKercher,et al.  The [Limited] Impact of Weather on Tourist Behavior in an Urban Destination , 2015 .

[4]  Yu Zheng,et al.  Trajectory Data Mining , 2015, ACM Trans. Intell. Syst. Technol..

[5]  Ulrike Gretzel,et al.  Multicity trip patterns: Tourists to the United States , 2006 .

[6]  Panos Kalnis,et al.  On Discovering Moving Clusters in Spatio-temporal Data , 2005, SSTD.

[7]  J. Dunn Well-Separated Clusters and Optimal Fuzzy Partitions , 1974 .

[8]  Yang Xu,et al.  Spatial structures of tourism destinations: A trajectory data mining approach leveraging mobile big data , 2020, Annals of Tourism Research.

[9]  Yusak O. Susilo,et al.  Analysing the complexity of day-to-day individual activity-travel patterns using a multidimensional sequence alignment model: A case study in the Bandung Metropolitan Area, Indonesia , 2017 .

[10]  W C Wilson,et al.  Activity Pattern Analysis by Means of Sequence-Alignment Methods , 1998 .

[11]  B. Mckercher,et al.  Modeling Tourist Movements: A Local Destination Analysis , 2006 .

[12]  T. Schwanen,et al.  Guest Editorial: The Space—Times of Decision Making , 2011 .

[13]  Tijs Neutens,et al.  The Prism of Everyday Life: Towards a New Research Agenda for Time Geography , 2011 .

[14]  C. Ratti,et al.  Mobile Landscapes: Using Location Data from Cell Phones for Urban Analysis , 2006 .

[15]  Patrick E. Osborne,et al.  Combining GPS & survey data improves understanding of visitor behaviour , 2017 .

[16]  Yi Zhang,et al.  Extraction and analysis of city's tourism districts based on social media data , 2017, Comput. Environ. Urban Syst..

[17]  Dimitrios Gunopulos,et al.  Efficient Mining of Spatiotemporal Patterns , 2001, SSTD.

[18]  Kevin K. F. Wong,et al.  A Spatial Econometric Approach to Model Spillover Effects in Tourism Flows , 2012 .

[19]  N. Shoval,et al.  Mobility Research in the Age of the Smartphone , 2016 .

[20]  P. Nijkamp,et al.  Congestion in Popular Tourist Areas: A Multi-Attribute Experimental Choice Analysis of Willingness-to-Wait in Amsterdam , 2008 .

[21]  Yang Yang,et al.  MODELING SEQUENTIAL TOURIST FLOWS: WHERE IS THE NEXT DESTINATION? , 2013 .

[22]  Bob McKercher,et al.  The Application of a Sequence Alignment Method to the Creation of Typologies of Tourist Activity in Time and Space , 2015 .

[23]  Dimitrios Buhalis Marketing the competitive destination of the future. , 2000 .

[24]  Xingshe Zhou,et al.  Mining Personal Frequent Routes via Road Corner Detection , 2016, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[25]  Muzaffer Uysal,et al.  Spatial Pattern of Tourist Flows Among the Asia-Pacific Countries: An Examination over a Decade , 2008 .

[26]  Qunying Huang,et al.  Mining frequent trajectory patterns from online footprints , 2016, IWGS@SIGSPATIAL.

[27]  N. Shoval,et al.  Spatiotemporal Contingencies in Tourists’ Intradiurnal Mobility Patterns , 2019 .

[28]  Noam Shoval,et al.  Sequence Alignment as a Method for Human Activity Analysis in Space and Time , 2007 .

[29]  Tie-Yan Liu,et al.  BrowseRank: letting web users vote for page importance , 2008, SIGIR '08.

[30]  S. Cole,et al.  Exploring quality of life perceptions in rural midwestern (USA) communities: an application of the core–periphery concept in a tourism development context , 2011 .

[31]  Chang-Hyeon Joh,et al.  Tourism Behaviour in Seoul: An Analysis of Tourism Activity Sequence using Multidimensional Sequence Alignments , 2010 .

[32]  Nikos Mamoulis,et al.  Mining frequent spatio-temporal sequential patterns , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[33]  M. Oppermann,et al.  A Model of Travel Itineraries , 1995 .

[34]  Ronald L. Graham,et al.  An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..

[35]  Tony Griffin,et al.  Urban Tourism Research: Developing an Agenda , 2008 .

[36]  B. Moyle,et al.  A core/periphery perspective on mega-event sustainability: Dystopic and utopic scenarios , 2021 .

[37]  B. Prideaux Building visitor attractions in peripheral areas - can uniqueness overcome isolation to produce viability? , 2002 .

[38]  Jiawei Han,et al.  Mining Moving Object, Trajectory and Traffic Data , 2010, DASFAA.

[39]  Dino Pedreschi,et al.  Trajectory pattern mining , 2007, KDD '07.

[40]  Trisalyn A. Nelson,et al.  A review of quantitative methods for movement data , 2013, Int. J. Geogr. Inf. Sci..

[41]  Xiaohui Yan,et al.  Mining frequent trajectory pattern based on vague space partition , 2013, Knowl. Based Syst..

[42]  Alexander Hubmann-Haidvogel,et al.  Tracing Tourists by Their Digital Footprints , 2016 .

[43]  Clarke Wilson,et al.  Activity patterns in space and time: calculating representative Hagerstrand trajectories , 2008 .

[44]  B. Mckercher,et al.  Movement Patterns of Tourists within a Destination , 2008 .

[45]  Donna Peuquet,et al.  Analyzing Spatio-Temporal Patterns and Their Evolution via Sequence Alignment , 2015, Spatial Cogn. Comput..

[46]  R. Ahas,et al.  The use of tracking technologies in tourism research: the first decade , 2016 .

[47]  Bob McKercher,et al.  First and Repeat Visitor Behaviour: GPS Tracking and GIS Analysis in Hong Kong , 2012 .

[48]  Noam Shoval,et al.  Impact of incentives on tourist activity in space-time , 2020 .

[49]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[50]  Xuelong Li,et al.  When Location Meets Social Multimedia , 2015, ACM Transactions on Intelligent Systems and Technology.

[51]  Yu Liu,et al.  The promises of big data and small data for travel behavior (aka human mobility) analysis , 2016, Transportation research. Part C, Emerging technologies.

[52]  Noam Shoval,et al.  Real-Time Measurement of Tourists’ Objective and Subjective Emotions in Time and Space , 2018 .

[53]  Rein Ahas,et al.  Evaluating passive mobile positioning data for tourism surveys: An Estonian case study , 2008 .

[54]  C. Arrowsmith,et al.  Cultural Influence on Spatial Behaviour , 2011 .

[55]  Elisabeth Kastenholz,et al.  Tourists’ spatial behaviour in urban destinations , 2018 .

[56]  Zahir Tari,et al.  A Survey of Clustering Algorithms for Big Data: Taxonomy and Empirical Analysis , 2014, IEEE Transactions on Emerging Topics in Computing.

[57]  Kajsa Ellegård,et al.  Torsten Hägerstrand’s time-geography as the cradle of the activity approach in transport geography , 2012 .

[58]  Elizabeth C. Delmelle,et al.  Mapping the DNA of Urban Neighborhoods: Clustering Longitudinal Sequences of Neighborhood Socioeconomic Change , 2016 .

[59]  Hui Xiong,et al.  Understanding and Enhancement of Internal Clustering Validation Measures , 2013, IEEE Transactions on Cybernetics.

[60]  Jun Lin,et al.  Tourist movement patterns understanding from the perspective of travel party size using mobile tracking data: A case study of Xi'an, China , 2018, Tourism Management.

[61]  Cheng-Lung Wu,et al.  Spatial and Temporal Tourist Dispersal Analysis in Multiple Destination Travel , 2008 .

[62]  D. Fesenmaier,et al.  CONCEPTUALIZATION OF MULTI- DESTINATION PLEASURE TRIPS , 1993 .

[63]  Tijs Neutens,et al.  Analysing spatiotemporal sequences in Bluetooth tracking data , 2012 .

[64]  Zhibin Lin,et al.  The impact of high-speed railway on tourism spatial structures between two adjoining metropolitan cities in China: Beijing and Tianjin , 2019, Journal of Transport Geography.

[65]  Dong Li,et al.  Public Transport Connectivity and Intercity Tourist Flows , 2019 .

[66]  Mohammad Hesam Hafezi,et al.  Activity travel of population segments grouped by daily time-use: GPS tracking in Halifax, Canada , 2019, Travel Behaviour and Society.