Motion segmentation and activity representation in crowds

We propose an approach for data clustering based on optimum-path forest. The samples are taken as nodes of a graph, whose arcs are defined by an adjacency relation. The nodes are weighted by their probability density values (pdf) and a connectivity function is maximized, such that each maximum of the pdf becomes root of an optimum-path tree (cluster), composed by samples “more strongly connected” to that maximum than to any other root. We discuss the advantages over other pdf-based approaches and present extensions to large datasets with results for interactive image segmentation and for fast, accurate, and automatic brain tissue classification in magnetic resonance (MR) images. We also include experimental comparisons with other clustering approaches. © 2009 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 19, 50–68, 2009.

[1]  King-Sun Fu,et al.  Shape Discrimination Using Fourier Descriptors , 1977, IEEE Trans. Syst. Man Cybern..

[2]  H. Soininen,et al.  Major decrease in the volume of the entorhinal cortex in patients with Alzheimer’s disease carrying the apolipoprotein E ε4 allele , 1998, Journal of neurology, neurosurgery, and psychiatry.

[3]  Richard M. Leahy,et al.  An Optimal Graph Theoretic Approach to Data Clustering: Theory and Its Application to Image Segmentation , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[5]  Philippe Salembier,et al.  Antiextensive connected operators for image and sequence processing , 1998, IEEE Trans. Image Process..

[6]  Larry S. Davis,et al.  Efficient mean-shift tracking via a new similarity measure , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[7]  VincentL. Morphological grayscale reconstruction in image analysis , 1993 .

[8]  David G. Stork,et al.  Pattern Classification , 1973 .

[9]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Jorge Stolfi,et al.  The image foresting transform: theory, algorithms, and applications , 2004 .

[11]  Bo Thiesson,et al.  Image and Video Segmentation by Anisotropic Kernel Mean Shift , 2004, ECCV.

[12]  Fernand Meyer,et al.  Levelings, Image Simplification Filters for Segmentation , 2004, Journal of Mathematical Imaging and Vision.

[13]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[14]  Michalis Vazirgiannis,et al.  Clustering validity assessment: finding the optimal partitioning of a data set , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[15]  Philippe Salembier,et al.  Flat zones filtering, connected operators, and filters by reconstruction , 1995, IEEE Trans. Image Process..

[16]  Alexandre X. Falcão,et al.  Design of connected operators using the image foresting transform , 2001, SPIE Medical Imaging.

[17]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Luc Vincent,et al.  Morphological grayscale reconstruction in image analysis: applications and efficient algorithms , 1993, IEEE Trans. Image Process..

[19]  L. Hubert Some applications of graph theory to clustering , 1974 .

[20]  O Nalcioglu,et al.  Quantification of magnetic resonance scans for hippocampal and parahippocampal atrophy in Alzheimer's disease , 1991, Neurology.

[21]  Serge Beucher,et al.  Use of watersheds in contour detection , 1979 .

[22]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[23]  Dorin Comaniciu,et al.  An Algorithm for Data-Driven Bandwidth Selection , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  C. Jack,et al.  MR‐based hippocampal volumetry in the diagnosis of Alzheimer's disease , 1992, Neurology.

[26]  D. Comaniciu,et al.  The variable bandwidth mean shift and data-driven scale selection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[27]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[28]  Alexandre X. Falcão,et al.  IFT-Watershed from gray-scale marker , 2002, Proceedings. XV Brazilian Symposium on Computer Graphics and Image Processing.

[29]  Philippe Salembier,et al.  Connected operators based on region-tree pruning strategies , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[30]  Charles T. Zahn,et al.  Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters , 1971, IEEE Transactions on Computers.

[31]  T. Lindeberg,et al.  Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .

[32]  Alexandre X. Falcão,et al.  The Ordered Queue and the Optimality of the Watershed Approaches , 2000, ISMM.

[33]  B M Dawant,et al.  Brain segmentation and white matter lesion detection in MR images. , 1994, Critical reviews in biomedical engineering.

[34]  Luciano da Fontoura Costa,et al.  A graph-based approach for multiscale shape analysis , 2004, Pattern Recognit..

[35]  Suyash P. Awate,et al.  Adaptive Markov modeling for mutual-information-based, unsupervised MRI brain-tissue classification , 2006, Medical Image Anal..

[36]  Jitendra Malik,et al.  Normalized Cuts and Image Segmentation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Bruno M. Carvalho,et al.  Multiseeded Segmentation Using Fuzzy Connectedness , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[40]  Fatos T. Yarman-Vural,et al.  BAS: a perceptual shape descriptor based on the beam angle statistics , 2003, Pattern Recognit. Lett..

[41]  Ilan Shimshoni,et al.  Mean shift based clustering in high dimensions: a texture classification example , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[42]  Alexandre X. Falcão,et al.  A Robust Extension of the Mean Shift Algorithm , 2008, IWCIA Special Track on Applications.

[43]  Fernando Pereira,et al.  MPEG-7 the generic multimedia content description standard, part 1 - Multimedia, IEEE , 2001 .

[44]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[45]  Jayaram K. Udupa,et al.  A 3D generalization of user-steered live-wire segmentation , 2000, Medical Image Anal..

[46]  Jayaram K. Udupa,et al.  Relative Fuzzy Connectedness among Multiple Objects: Theory, Algorithms, and Applications in Image Segmentation , 2001, Comput. Vis. Image Underst..

[47]  Michel Herbin,et al.  A clustering method based on the estimation of the probability density function and on the skeleton by influence zones. Application to image processing , 1996, Pattern Recognit. Lett..

[48]  Vladimir Katkovnik,et al.  Nonparametric density estimation with adaptive varying window size , 2001, SPIE Remote Sensing.