Wavelike statistics from pilot-wave dynamics in a circular corral.

Bouncing droplets can self-propel laterally along the surface of a vibrated fluid bath by virtue of a resonant interaction with their own wave field. The resulting walking droplets exhibit features reminiscent of microscopic quantum particles. Here we present the results of an experimental investigation of droplets walking in a circular corral. We demonstrate that a coherent wavelike statistical behavior emerges from the complex underlying dynamics and that the probability distribution is prescribed by the Faraday wave mode of the corral. The statistical behavior of the walking droplets is demonstrated to be analogous to that of electrons in quantum corrals.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  P. Holland,et al.  The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics , 1993 .

[3]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.