Improvement of Target Detection Based on Signal Dependent Noise Reduction for Hyperspectral Image

In the hyperspectral images (HSI) acquired by the new-generation hyperspectral sensors the signal dependent noise is an important limitation to the detection. Therefore, noise reduction is an important preprocessing step to analyze the information in the hyperspectral image. A signal dependent noise cannot be reduced by conventional linear filtering. Therefore, a new method based on Parallel factor analysis (PARAFAC) decomposition is proposed to estimate the noise of hyperspectral remote sensing image. Then, the estimated noise is used for whitening the colored structural noise. By using this transformation, the data noise from new-generation hyperspectral sensors is diminished, thereby allowing a minimization of negative impacts on hyperspectral detection applications.

[1]  Oleksiy B. Pogrebnyak,et al.  Analysis of classification accuracy for pre-filtered multichannel remote sensing data , 2013, Expert Syst. Appl..

[2]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[3]  Luciano Alparone,et al.  Signal-dependent noise modelling and estimation of new-generation imaging spectrometers , 2009, 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[4]  Ping Zhong,et al.  Multiple-Spectral-Band CRFs for Denoising Junk Bands of Hyperspectral Imagery , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Liangpei Zhang,et al.  Hyperspectral Image Denoising Employing a Spectral–Spatial Adaptive Total Variation Model , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Caroline Fossati,et al.  Improvement of Target-Detection Algorithms Based on Adaptive Three-Dimensional Filtering , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Qian Du,et al.  Interference and noise-adjusted principal components analysis , 1999, IEEE Trans. Geosci. Remote. Sens..

[8]  R. E. Roger Principal Components transform with simple, automatic noise adjustment , 1996 .

[9]  Dimitris G. Manolakis,et al.  Detection algorithms for hyperspectral imaging applications , 2002, IEEE Signal Process. Mag..

[10]  Bo-Cai Gao,et al.  An operational method for estimating signal to noise ratios from data acquired with imaging spectrometers , 1993 .

[11]  Vladimir V. Lukin,et al.  Local Signal-Dependent Noise Variance Estimation From Hyperspectral Textural Images , 2011, IEEE Journal of Selected Topics in Signal Processing.

[12]  John F. Arnold,et al.  Reliably estimating the noise in AVIRIS hyperspectral images , 1996 .

[13]  Salah Bourennane,et al.  Noise Removal From Hyperspectral Images by Multidimensional Filtering , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Angshul Majumdar,et al.  Exploiting spatiospectral correlation for impulse denoising in hyperspectral images , 2015, J. Electronic Imaging.

[15]  Salah Bourennane,et al.  Denoising and Dimensionality Reduction Using Multilinear Tools for Hyperspectral Images , 2008, IEEE Geoscience and Remote Sensing Letters.

[16]  Jorge E. Pezoa,et al.  Multidimensional Striping Noise Compensation in Hyperspectral Imaging: Exploiting Hypercubes’ Spatial, Spectral, and Temporal Redundancy , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[17]  Caroline Fossati,et al.  Nonwhite Noise Reduction in Hyperspectral Images , 2012, IEEE Geoscience and Remote Sensing Letters.

[18]  Joseph Meola,et al.  Modeling and estimation of signal-dependent noise in hyperspectral imagery. , 2011, Applied optics.

[19]  H. Law Research methods for multimode data analysis , 1984 .

[20]  Pedram Ghamisi,et al.  Automatic Hyperspectral Image Restoration Using Sparse and Low-Rank Modeling , 2017, IEEE Geoscience and Remote Sensing Letters.

[21]  R. Harshman,et al.  PARAFAC: parallel factor analysis , 1994 .

[22]  Ram M. Narayanan,et al.  Noise estimation in remote sensing imagery using data masking , 2003 .

[23]  Caroline Fossati,et al.  Reduction of Signal-Dependent Noise From Hyperspectral Images for Target Detection , 2014, IEEE Transactions on Geoscience and Remote Sensing.