Thermal Transport in Lithium-Ion Batteries: The Effect of Degradation

[1]  P. Shearing,et al.  On the Relations between Lithium-Ion Battery Reaction Entropy, Surface Temperatures and Degradation , 2023, Batteries.

[2]  K. Birke,et al.  Effects of geometric, structural and operational parameters on the thermal conductivity of lithium-ion cells , 2022, Journal of Power Sources.

[3]  N. Li,et al.  Rapid operando gas monitor for commercial real-size lithium ion batteries: Gas evolution and relation with electrode materials , 2022, Journal of Energy Chemistry.

[4]  G. Offer,et al.  Measuring Irreversible Heat Generation in Lithium-Ion Batteries: An Experimental Methodology , 2022, Journal of The Electrochemical Society.

[5]  Asanthi Jinasena ,et al.  Online Internal Temperature Sensors in Lithium-Ion Batteries: State-of-the-Art and Future Trends , 2022, Frontiers in Chemical Engineering.

[6]  A. Jossen,et al.  Meta-analysis of experimental results for heat capacity and thermal conductivity in lithium-ion batteries: A critical review , 2022, Journal of Power Sources.

[7]  D. Brett,et al.  In-situ X-ray tomographic imaging study of gas and structural evolution in a commercial Li-ion pouch cell , 2022, Journal of Power Sources.

[8]  Jianbo Zhang,et al.  Capacity plunge of lithium-ion batteries induced by electrolyte drying-out: Experimental and Modeling Study , 2021, Journal of Energy Storage.

[9]  W. Sinz,et al.  Thermal Conductivity in Aged Li-Ion Cells under Various Compression Conditions and State-of-Charge , 2021, Batteries.

[10]  D. Sauer,et al.  Inhomogeneities and Cell-to-Cell Variations in Lithium-Ion Batteries, a Review , 2021, Energies.

[11]  A. Korre,et al.  Cost and carbon footprint reduction of electric vehicle lithium-ion batteries through efficient thermal management , 2021, Applied Energy.

[12]  G. Offer,et al.  Lithium ion battery degradation: what you need to know. , 2021, Physical chemistry chemical physics : PCCP.

[13]  M. Dubarry,et al.  Directionality of thermal gradients in lithium-ion batteries dictates diverging degradation modes , 2021, Cell Reports Physical Science.

[14]  P. Shearing,et al.  Temperature, Ageing and Thermal Management of Lithium-Ion Batteries , 2021 .

[15]  J. Pyrhonen,et al.  Determination of the through-plane thermal conductivity and specific heat capacity of a Li-ion cylindrical cell , 2020 .

[16]  A. Jossen,et al.  Thermal conductivity inside prismatic lithium-ion cells with dependencies on temperature and external compression pressure , 2020 .

[17]  T. Wetzel,et al.  Modeling the Thermal Conductivity of Porous Electrodes of Li‐Ion Batteries as a Function of Microstructure Parameters , 2020, Energy Technology.

[18]  G. Offer,et al.  The role of cell geometry when selecting tab or surface cooling to minimise cell degradation , 2020 .

[19]  N. García-Aráez,et al.  A review of gas evolution in lithium ion batteries , 2020 .

[20]  Sean D. Lubner,et al.  Identification and characterization of the dominant thermal resistance in lithium-ion batteries using operando 3-omega sensors , 2020, Journal of Applied Physics.

[21]  F. Cao,et al.  A comprehensive study on thermal conductivity of the lithium‐ion battery , 2020, International Journal of Energy Research.

[22]  G. Offer,et al.  The Surface Cell Cooling Coefficient: A Standard to Define Heat Rejection from Lithium Ion Battery Pouch Cells , 2020 .

[23]  C. Agert,et al.  The Impact of Environmental Factors on the Thermal Characteristic of a Lithium–ion Battery , 2020, Batteries.

[24]  Guangsheng Zhang,et al.  Effects of Nonuniform Temperature Distribution on Degradation of Lithium-Ion Batteries , 2019, Journal of Electrochemical Energy Conversion and Storage.

[25]  Seong-Jin An,et al.  Formation Challenges of Lithium-Ion Battery Manufacturing , 2019 .

[26]  Sarith P. Sathian,et al.  Prediction of Kapitza resistance at fluid-solid interfaces. , 2019, The Journal of chemical physics.

[27]  Hongkyung Lee,et al.  High-energy lithium metal pouch cells with limited anode swelling and long stable cycles , 2019, Nature Energy.

[28]  P. Notten,et al.  A review on various temperature-indication methods for Li-ion batteries , 2019, Applied Energy.

[29]  Teng Zhang,et al.  How to Cool Lithium Ion Batteries: Optimising Cell Design using a Thermally Coupled Model , 2019, Journal of The Electrochemical Society.

[30]  G. Offer,et al.  The Cell Cooling Coefficient: A Standard to Define Heat Rejection from Lithium-Ion Batteries , 2019, Journal of The Electrochemical Society.

[31]  V. Wood,et al.  Quantification and modeling of mechanical degradation in lithium-ion batteries based on nanoscale imaging , 2018, Nature Communications.

[32]  M. Dubarry,et al.  Calendar aging of commercial Li-ion cells of different chemistries – A review , 2018, Current Opinion in Electrochemistry.

[33]  M. Carvalho,et al.  The lithium-ion battery: State of the art and future perspectives , 2018, Renewable and Sustainable Energy Reviews.

[34]  A. Loges,et al.  Thermal conductivity of Li-ion batteries and their electrode configurations – A novel combination of modelling and experimental approach , 2017 .

[35]  S. Kjelstrup,et al.  Measurements of ageing and thermal conductivity in a secondary NMC-hard carbon Li-ion battery and the impact on internal temperature profiles , 2017 .

[36]  S. Kjelstrup,et al.  Thermal conductivity and internal temperature profiles of Li-ion secondary batteries , 2017 .

[37]  Anders Hammer Strømman,et al.  Identifying key assumptions and differences in life cycle assessment studies of lithium-ion traction batteries with focus on greenhouse gas emissions , 2017 .

[38]  P. Bruce,et al.  Degradation diagnostics for lithium ion cells , 2017 .

[39]  Pavan Badami,et al.  Can Li-Ion batteries be the panacea for automotive applications? , 2017 .

[40]  Manuel Baumann,et al.  The environmental impact of Li-Ion batteries and the role of key parameters – A review , 2017 .

[41]  A. Loges,et al.  Thermal characterization of Li-ion cell electrodes by photothermal deflection spectroscopy , 2016 .

[42]  A. Kwade,et al.  Effect of Microstructure on Thermal Conduction within Lithium‐Ion Battery Electrodes using Discrete Element Method Simulations , 2016 .

[43]  Gregory J. Offer,et al.  Surface Cooling Causes Accelerated Degradation Compared to Tab Cooling for Lithium-Ion Pouch Cells , 2016 .

[44]  Jiuchun Jiang,et al.  Comparison of different cooling methods for lithium ion battery cells , 2016 .

[45]  Sanjay R. Mathur,et al.  Bruggeman's Exponents for Effective Thermal Conductivity of Lithium-Ion Battery Electrodes , 2016 .

[46]  Jiateng Zhao,et al.  Investigation of power battery thermal management by using mini-channel cold plate , 2015 .

[47]  I. Ulacia,et al.  Thermal characterization of large size lithium-ion pouch cell based on 1d electro-thermal model , 2014 .

[48]  M. Wohlfahrt‐Mehrens,et al.  Temperature dependent ageing mechanisms in Lithium-ion batteries – A Post-Mortem study , 2014 .

[49]  J. Pharoah,et al.  Thermal Conductivity, Heat Sources and Temperature Profiles of Li-Ion Batteries , 2014 .

[50]  Siaw Kiang Chou,et al.  Ultra-thin minichannel LCP for EV battery thermal management , 2014 .

[51]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[52]  Binggang Cao,et al.  Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application , 2010 .

[53]  S. Kjelstrup,et al.  Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell , 2010 .

[54]  Iwan Sumirat,et al.  Theoretical consideration of the effect of porosity on thermal conductivity of porous materials , 2006 .

[55]  S. C. Chen,et al.  Thermal analysis of lithium-ion batteries , 2005 .

[56]  Ralph E. White,et al.  Capacity Fade Mechanisms and Side Reactions in Lithium‐Ion Batteries , 1998 .

[57]  P. Liley,et al.  Thermal Conductivity of the Elements: A Comprehensive Review , 1974 .