Trajectory-based heating analysis for the ESA/Rosetta earth return vehicle

A coupled, trajectory based flowfield and material thermal response analysis is presented for the European Space Agency (ESA) proposed Rosetta comet nucleus sample return vehicle. The probe returns to Earth along a hyperbolic trajectory with an entry velocity of 16.5 km/sec and requires an ablative heat shield on the forebody. Combined radiative and convective, ablating flowfield analyses were performed for the significant heating portion of the shallow ballistic entry trajectory. Both quasi-steady ablation and fully transient analyses were performed for a heat shield composed of carbon-phenolic ablative material. Quasi-steady analysis was performed using the two-dimensional, axisymmetric codes RASLE and BLIMPK. Transient computational results were obtained from the one-dimensional ablation/conduction code, CMA. Results are presented for heating, temperature and ablation rate distributions over the probe forebody for various trajectory points. Comparison of transient and quasi-steady results indicates that, for the heating pulse encountered by this probe, the quasi-static approach is conservative from the standpoint of predicted surface recession.