Robustness of MUSCL schemes for 2D unstructured meshes

We consider second-order accuracy MUSCL schemes to approximate the solutions of hyperbolic system of conservation laws. In the context of the 2D unstructured grids, we propose a limitation procedure on the gradient reconstruction to enforce several stability properties. We establish that the MUSCL scheme preserves the invariant domains and satisfy a set of entropy inequalities. A conservation assumption is not useful in the present work to define the piecewise linear approximations and the proposed limitation can be understood as a systematic correction of the standard gradient reconstruction procedure. The numerical method is applied to the compressible Euler equations. The gradient reconstruction is performed using the characteristic variables. Several numerical tests exhibit stability and robustness of the scheme.

[1]  P. Lax Shock Waves and Entropy , 1971 .

[2]  Roland Masson,et al.  A relaxation method for two-phase flow models with hydrodynamic closure law , 2005, Numerische Mathematik.

[3]  Benoît Perthame,et al.  A variant of Van Leer's method for multidimensional systems of conservation laws , 1994 .

[4]  Herman Deconinck,et al.  Residual distribution for general time-dependent conservation laws , 2005 .

[5]  Richard Sanders,et al.  High resolution staggered mesh approach for nonlinear hyperbolic systems of conser-vation laws , 1992 .

[6]  Christophe Berthon,et al.  Numerical approximations of the 10-moment Gaussian closure , 2006, Math. Comput..

[7]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[8]  Christophe Berthon Inégalités d'entropie pour un schéma de relaxation , 2005 .

[9]  François Bouchut,et al.  A MUSCL method satisfying all the numerical entropy inequalities , 1996, Math. Comput..

[10]  C. Berthon,et al.  Stability of the MUSCL Schemes for the Euler Equations , 2005 .

[11]  B. Perthame,et al.  Boltzmann type schemes for gas dynamics and the entropy property , 1990 .

[12]  Eitan Tadmor,et al.  A minimum entropy principle in the gas dynamics equations , 1986 .

[13]  S. Osher,et al.  Triangle based adaptive stencils for the solution of hyperbolic conservation laws , 1992 .

[14]  B. Perthame,et al.  Relaxation of Energy and Approximate Riemann Solvers for General Pressure Laws in Fluid Dynamics , 1998 .

[15]  C. Angelopoulos High resolution schemes for hyperbolic conservation laws , 1992 .

[16]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[17]  P. Colella Multidimensional upwind methods for hyperbolic conservation laws , 1990 .

[18]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[19]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[20]  Z. Xin,et al.  The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .

[21]  B. Larrouturou How to preserve the mass fractions positivity when computing compressible multi-component flows , 1991 .

[22]  F. Bouchut Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .

[23]  Benoît Perthame,et al.  Maximum principle on the entropy and second-order kinetic schemes , 1994 .

[24]  Philip L. Roe,et al.  Generalized formulation of TVD Lax-Wendroff schemes , 1984 .

[25]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[26]  Bruno Stoufflet,et al.  TVD Schemes to Compute Compressible Viscous Flows on Unstructured Meshes , 1989 .

[27]  François Bouchut,et al.  Entropy satisfying flux vector splittings and kinetic BGK models , 2003, Numerische Mathematik.

[28]  Smadar Karni,et al.  Multicomponent Flow Calculations by a Consistent Primitive Algorithm , 1994 .