Mobile sensor platforms: categorisation and research applications in precision farming

Abstract. The usage of mobile sensor platforms arose in research a few decades ago. Since the beginning of satellite sensing, measurement principles and analysing methods have become widely implemented for aerial and ground vehicles. Mainly in Europe, the United States and Australia, sensor platforms in precision farming are used for surveying, monitoring and scouting tasks. This review gives an overview of available sensor platforms used in recent agricultural and related research projects. A general categorisation tree for platforms is outlined in this work. Working in manual, automatic or autonomous ways, these ground platforms and unmanned aircraft systems (UAS) with an agricultural scope are presented with their sensor equipment and the possible architectural models. Thanks to advances in highly powerful electronics, smaller devices mounted on platforms have become economically feasible for many applications. Designed to work automatically or autonomously, they will be able to interact in intelligent swarms. Sensor platforms can fulfil the need for developing, testing and optimising new applications in precision farming like weed control or pest management. Furthermore, commercial suppliers of platform hardware used in sensing tasks are listed.

[1]  Barbara Hayes-Roth,et al.  A Blackboard Architecture for Control , 1985, Artif. Intell..

[2]  N. D. Tillett,et al.  Ground based sensing systems for autonomous agricultural vehicles , 2000 .

[3]  J. V. Stafford,et al.  Robotic agriculture - the future of agricultural mechanisation? , 2005 .

[4]  D. Lamb The use of qualitative airborne multispectral imaging for managing agricultural crops : a case study in south-eastern australia , 2000 .

[5]  Craig S. T. Daughtry,et al.  Acquisition of NIR-Green-Blue Digital Photographs from Unmanned Aircraft for Crop Monitoring , 2010, Remote. Sens..

[6]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[7]  P. Zarco-Tejada,et al.  Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera , 2012 .

[8]  H. Ramon,et al.  Foliar Disease Detection in the Field Using Optical Sensor Fusion , 2004 .

[9]  Subhash Challa,et al.  Autonomous Vehicles Navigation with Visual Target Tracking: Technical Approaches , 2008, Algorithms.

[10]  Mark M. Millonas,et al.  Swarms, Phase Transitions, and Collective Intelligence , 1993, adap-org/9306002.

[11]  Roland Gerhards,et al.  Decision Rules for Site-Specific Weed Management , 2010 .

[12]  T. Knappenberger,et al.  Spatial assessment of the correlation of seeding depth with emergence and yield of corn , 2011, Precision Agriculture.

[13]  Luiz Chaimowicz,et al.  Exploring Microsoft Robotics Studio as a Mechanism for Service-Oriented Robotics , 2010, 2010 Latin American Robotics Symposium and Intelligent Robotics Meeting.

[14]  P. H. Swain,et al.  RELATING ORGANIC MATTER AND CLAY CONTENT TO THE MULTISPECTRAL RADIANCE OF SOILS , 1972 .

[15]  Yael Edan,et al.  Human-robot collaboration for improved target recognition of agricultural robots , 2003, Ind. Robot.

[16]  Noboru Noguchi,et al.  Agricultural automatic guidance research in North America , 2000 .

[17]  Ulrike Steiner,et al.  Sensorik für einen präzisierten Pflanzenschutz , 2008, Gesunde Pflanzen.

[18]  Antonio Barrientos,et al.  Aerial remote sensing in agriculture: A practical approach to area coverage and path planning for fleets of mini aerial robots , 2011, J. Field Robotics.

[19]  Xavier P. Burgos-Artizzu,et al.  Mapping Wide Row Crops with Video Sequences Acquired from a Tractor Moving at Treatment Speed , 2011, Sensors.

[20]  P. Grossmann MULTISENSOR DATA FUSION , 1998 .

[21]  Francisco Angel Moreno,et al.  A collection of outdoor robotic datasets with centimeter-accuracy ground truth , 2009, Auton. Robots.

[22]  N. Zhang,et al.  Precision agriculture—a worldwide overview , 2002 .

[23]  K. Suzanne Barber,et al.  Autonomy as Decision-Making Control , 2000, ATAL.

[24]  C. Tucker,et al.  Satellite remote sensing of primary production , 1986 .

[25]  Lee H. MacDonald,et al.  Spatial Variability of Measured Soil Properties across Site-Specific Management Zones , 2005 .

[26]  Rolf Pfeifer,et al.  Understanding intelligence , 2020, Inequality by Design.

[27]  Dervis Karaboga,et al.  A survey: algorithms simulating bee swarm intelligence , 2009, Artificial Intelligence Review.

[28]  Ángela Ribeiro Seijas Robots versus pests (RHEA - Robot Fleets for Highly Effective Agriculture and Forestry Management) , 2014 .

[29]  Raffaello D'Andrea,et al.  Optimization-based iterative learning for precise quadrocopter trajectory tracking , 2012, Autonomous Robots.

[30]  Claus G. Sørensen,et al.  HortiBot: A System Design of a Robotic Tool Carrier for High-tech Plant Nursing , 2007 .

[31]  Anders Orebäck,et al.  BERRA: a research architecture for service robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[32]  H. Eisenbeiss,et al.  DIRECT GEOREFERENCING OF UAVS , 2012 .

[33]  Arno Ruckelshausen,et al.  Autonomous Systems for Plant Protection , 2010 .

[34]  Nicolas Tremblay,et al.  NUTRIENT STRESS OF CORN PLANTS: EARLY DETECTION AND DISCRIMINATION USING A COMPACT MULTIWAVELENGTH FLUORESCENT LIDAR , 2000 .

[35]  T. Foerster,et al.  HIGH-PRECISION POSITIONING AND REAL-TIME DATA PROCESSING OF UAV-SYSTEMS , 2012 .

[36]  Anders Orebäck,et al.  A component framework for autonomous mobile robots , 2004 .

[37]  Adriano Camps,et al.  Design and First Results of an UAV-Borne L-Band Radiometer for Multiple Monitoring Purposes , 2010, Remote. Sens..

[38]  Nathalie Gorretta,et al.  Getting simultaneous red and near infrared bands from a single digital camera for plant monitoring applications , 2012 .

[39]  Yves Demazeau,et al.  Applying AI to Cooperating Agricultural Robots , 2006, AIAI.

[40]  Matthew Moore,et al.  Autonomous Vehicles for Personal Transport: A Technology Assessment , 2011 .

[41]  Arko Lucieer,et al.  An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds , 2012, Remote. Sens..

[42]  Ming-Hon Hwang,et al.  Blended remote sensing tools for house management , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[43]  Patricio Nebot,et al.  A New HLA-Based Distributed Control Architecture for Agricultural Teams of Robots in Hybrid Applications with Real and Simulated Devices or Environments , 2011, Sensors.

[44]  Hermann Auernhammer,et al.  Precision farming — the environmental challenge , 2001 .

[45]  W. S. Lee,et al.  Robotic Weed Control System for Tomatoes , 2004, Precision Agriculture.

[46]  Joseph F. Engelberger Historical Perspective and Role in Automation , 2007 .

[47]  J. Roy,et al.  Data fusion concepts applied to a suite of dissimilar sensors , 1996, Proceedings of 1996 Canadian Conference on Electrical and Computer Engineering.

[48]  Simone Graeff-Hönninger,et al.  Use of vegetation indices to detect plant diseases , 2007, GIL Jahrestagung.

[49]  François Michaud,et al.  Robotic Software Integration Using MARIE , 2006 .

[50]  Alessandro Saffiotti,et al.  The Saphira architecture: a design for autonomy , 1997, J. Exp. Theor. Artif. Intell..

[51]  Christian Knoth,et al.  DGPS- and INS-Based Orthophotogrammetry on Micro UAV Platforms for Precision Farming Services , 2011, Geoinformatik.

[52]  Eric Gottlieb,et al.  The Umbra Simulation Framework , 2001 .

[53]  David C. Slaughter,et al.  Autonomous robotic weed control systems: A review , 2008 .

[54]  Johanna Link,et al.  Assessment of cereal nitrogen requirements derived by optical on-the-go sensors on heterogeneous soils , 2006 .

[55]  S. Fountas,et al.  Agricultural robots—system analysis and economic feasibility , 2006, Precision Agriculture.

[56]  Franz Andert,et al.  NExt UAV – Precise relative positioning using low-cost GNSS coupled with INS, optical-flow and cooperative localization methods , 2011 .

[57]  Erich-Christian Oerke,et al.  Precision Crop Protection - the Challenge and Use of Heterogeneity , 2014 .

[58]  Johanna Link,et al.  Identification of powdery mildew (Erysiphe graminis sp. tritici) and take-all disease (Gaeumannomyces graminis sp. tritici) in wheat (Triticum aestivum L.) by means of leaf reflectance measurements , 2006, Central European Journal of Biology.

[59]  N. D. Tillett,et al.  Computer-Vision-based Hoe Guidance for Cereals — an Initial Trial , 1999 .

[60]  Irene Marzolff,et al.  Unmanned Aerial Vehicle (UAV) for Monitoring Soil Erosion in Morocco , 2012, Remote. Sens..

[61]  James H. Everitt,et al.  A three-camera multispectral digital video imaging system , 1995 .

[62]  John R. Miller,et al.  Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture , 2002 .

[63]  Josse De Baerdemaeker,et al.  Fine-scaled optical detection of nitrogen stress in grain crops , 2004 .

[64]  C. Tucker Remote sensing of leaf water content in the near infrared , 1980 .

[65]  Gunter Menz,et al.  Airborne hyperspectral imaging for the detection of powdery mildew in wheat , 2008, Optical Engineering + Applications.

[66]  Belur V. Dasarathy,et al.  Sensor fusion potential exploitation-innovative architectures and illustrative applications , 1997, Proc. IEEE.

[67]  Hugh F. Durrant-Whyte,et al.  Sensor Models and Multisensor Integration , 1988, Int. J. Robotics Res..

[68]  Agnès Bégué,et al.  Can Commercial Digital Cameras Be Used as Multispectral Sensors? A Crop Monitoring Test , 2008, Sensors.

[69]  M. Nørremark,et al.  Evaluation of an autonomous GPS-based system for intra-row weed control by assessing the tilled area , 2011, Precision Agriculture.

[70]  D. Guinea,et al.  An agent of behaviour architecture for unmanned control of a farming vehicle , 2008 .

[71]  Peter L. Rothman,et al.  Fusion or confusion: knowledge or nonsense? , 1991, Defense, Security, and Sensing.

[72]  A Stein,et al.  Space-time statistics for decision support to smart farming. , 1997, Ciba Foundation symposium.

[73]  Peter Schmollgruber,et al.  The NACRE Innovative Evaluation Platform and its Navigation & Control Strategies , 2011 .

[74]  Nicolas Tremblay,et al.  Sensing crop nitrogen status with fluorescence indicators. A review , 2011, Agronomy for Sustainable Development.

[75]  W. Cy Rutledge New sensor developments , 1992 .

[76]  Scott C. Chapman,et al.  Autonomous unmanned helicopter system for remote sensing missions in unknown environments , 2012 .

[77]  Thierry Siméon,et al.  Path coordination for multiple mobile robots: a resolution-complete algorithm , 2002, IEEE Trans. Robotics Autom..

[78]  Anders Orebäck,et al.  Evaluation of Architectures for Mobile Robotics , 2003, Auton. Robots.

[79]  Gerald Gerlach,et al.  Compensation method in sensor technology: a system-based description , 2012 .

[80]  Frédéric Baret,et al.  Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots , 2008, Sensors.

[81]  Alice M. Agogino,et al.  Intelligent Sensor Validation And Sensor Fusion For Reliability And Safety Enhancement In Vehicle Control , 1995 .

[82]  H. T. Søgaard,et al.  Determination of crop rows by image analysis without segmentation , 2003 .

[83]  Martin Weis An image analysis and classification system for automatic weed species identification in different crops for precision weed management , 2010 .

[84]  John Anderson,et al.  Achieving flexible autonomy in multiagent systems using constraints , 1992, Appl. Artif. Intell..

[85]  Vincent G. Ambrosia,et al.  Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use , 2012, Remote. Sens..

[86]  Chunhua Zhang,et al.  The application of small unmanned aerial systems for precision agriculture: a review , 2012, Precision Agriculture.

[87]  Jeremy D. Schwark,et al.  Detect, Sense and Avoid , 2012 .

[88]  A. R. Frost,et al.  The development of a remotely operated vehicle (ROV) for aquaculture , 1996 .

[89]  Francisca López-Granados,et al.  Weed detection for site-specific weed management: mapping and real-time approaches , 2011 .

[90]  Belur V. Dasarathy,et al.  Information Fusion - what, where, why, when, and how? Editorial , 2001, Inf. Fusion.

[91]  Bernardo Rudorff,et al.  Monitoring biennial bearing effect on coffee yield using modis remote sensing imagery , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[92]  Peter Schulze Lammers,et al.  Sensor Fusion for Precision Agriculture , 2011 .

[93]  Nicholas Roy,et al.  State estimation for aggressive flight in GPS-denied environments using onboard sensing , 2012, 2012 IEEE International Conference on Robotics and Automation.

[94]  Alexandre Escolà,et al.  Weed discrimination using ultrasonic sensors , 2011 .

[95]  Barry G. Evans,et al.  Satellite communication systems , 1999 .

[96]  R. Dunford,et al.  Potential and constraints of Unmanned Aerial Vehicle technology for the characterization of Mediterranean riparian forest , 2009 .

[97]  Barry K. Goodwin,et al.  Farming Efficiency and the Determinants of Multiple Job Holding by Farm Operators , 2004 .

[98]  M. S. Moran,et al.  Opportunities and limitations for image-based remote sensing in precision crop management , 1997 .

[99]  J. Bouma,et al.  Future Directions of Precision Agriculture , 2005, Precision Agriculture.

[100]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[101]  Monique Chyba,et al.  Autonomous underwater vehicles , 2009 .

[102]  R. Gerhards,et al.  Practical experiences with a system for site‐specific weed control in arable crops using real‐time image analysis and GPS‐controlled patch spraying , 2006 .

[103]  R. Swift,et al.  Active-passive airborne ocean color measurement. 2: Applications. , 1986, Applied optics.

[104]  Soizik Laguette,et al.  Remote sensing applications for precision agriculture: A learning community approach , 2003 .

[105]  Allison K. Jonjak Analysis of Site-Specific Adjustment Applied to On-The-Go Soil Sensing Data for Agronomic Use , 2011 .

[106]  Martin Weis,et al.  An Ultrasonic System for Weed Detection in Cereal Crops , 2012, Sensors.

[107]  R. J. Gilkes,et al.  Proceedings of the 19th World Congress of Soil Science: Soil solutions for a changing world, Brisbane, Australia, 1-6 August 2010. , 2010 .

[108]  T. Isaksson,et al.  Comparisons of Two Hand-Held, Multispectral Field Radiometers and a Hyperspectral Airborne Imager in Terms of Predicting Spring Wheat Grain Yield and Quality by Means of Powered Partial Least Squares Regression , 2010 .

[109]  D. Corwin,et al.  Application of Soil Electrical Conductivity to Precision Agriculture , 2003 .

[110]  James L. Crowley,et al.  Navigation for an intelligent mobile robot , 1985, IEEE J. Robotics Autom..

[111]  Clyde W. Fraisse,et al.  Delineation of Site-Specific Management Zones by Unsupervised Classification of Topographic Attributes and Soil Electrical Conductivity , 2001 .

[112]  Florian Segor,et al.  Towards Autonomous Micro UAV Swarms , 2011, J. Intell. Robotic Syst..

[113]  Vijay Kumar,et al.  Towards a swarm of agile micro quadrotors , 2012, Robotics: Science and Systems.

[114]  M. S. Moran,et al.  Remote Sensing for Crop Management , 2003 .

[115]  Benoit Thuilot,et al.  Formation control algorithm for a fleet of mobile robots , 2012 .

[116]  Paul Heinz Heinemann,et al.  ELECTRONIC NOSE CHEMICAL SENSOR FEASIBILITY STUDY FOR THE DIFFERENTIATION OF APPLE CULTIVARS , 2005 .

[117]  Ren C. Luo,et al.  Multisensor fusion and integration: approaches, applications, and future research directions , 2002 .

[118]  P. C. Robert,et al.  Use of a new sub-metric multi-depth soil imaging system (MuCEP). , 2000 .

[119]  Raj Khosla,et al.  Precision agriculture: challenges and opportunities in a flat world , 2010 .

[120]  Chao Li,et al.  Autonomous Navigation for Autonomous Underwater Vehicles Based on Information Filters and Active Sensing , 2011, Sensors.

[121]  Viacheslav I. Adamchuk,et al.  On-the-go soil sensors for precision agriculture , 2004 .

[122]  Paul C. Struik,et al.  Field-scale validation of an automated soil nitrate extraction and measurement system , 2009, Precision Agriculture.

[123]  Sebastian Thrun,et al.  Perspectives on standardization in mobile robot programming: the Carnegie Mellon Navigation (CARMEN) Toolkit , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[124]  Markus Maurer,et al.  Autonomous Vehicle Guidance on Braunschweig's inner ring road within the Stadtpilot Project , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[125]  David C. Slaughter,et al.  GPS-Based Intra-Row Weed Control System: Performance and Labor Savings , 2012 .

[126]  K. Schilling,et al.  Mobile Robots for Planetary Exploration , 1995 .

[127]  T. Smithers Autonomy in Robots and Other Agents , 1997, Brain and Cognition.

[128]  Francisca López Granados Weed detection for site-specific weed management: Mapping and real-time approaches , 2011 .