Electrical transport properties and photoluminescence of lattice-matched InAs0.91Sb0.09 on GaSb grown by liquid-phase epitaxy

Liquid-phase epitaxy has been successfully used to grow lattice-matched InAs0.91Sb0.09 on GaSb substrates with good electrical transport characteristics. The electron concentrations for undoped n-InAs0.91Sb0.09 samples were found to be in the range (1-4)*1017 cm-3. The Hall electron mobilities are high (11700 cm2 V-1 s-1 at 77 K and 8800 cm2 V-1 s-1 at 300 K) for undoped InAs0.91Sb0.09 samples. The mobility data have been analysed taking into account the appropriate scattering mechanisms. The effects of zinc doping on the carrier concentrations and mobilities were also investigated together with the photoluminescence emission spectra.

[1]  Photoluminescence of MBE-grown InAs1-xSbx lattice matched to GaSb , 1993 .

[2]  J. Chyi,et al.  Growth of InSb and InAs1−xSbx on GaAs by molecular beam epitaxy , 1988 .

[3]  W. Tsang,et al.  Optically pumped laser oscillation at 3.82 μm from InAs1−xSbx grown by molecular beam epitaxy on GaSb , 1985 .

[4]  S. Chu,et al.  Growth of InAsSb alloy and InAsSb/GaSb superlattice lattice matched to (100) GaSb by molecular‐beam epitaxy , 1986 .

[5]  J. G. Pasko,et al.  Backside-illuminated InAs/1-x/Sb/x/-InAs narrow-band photodetectors , 1977 .

[6]  H. Mani,et al.  The influence of supercooling on the liquid phase epitaxial growth of inas1−xsbx on (100) GASB substrates , 1987 .

[7]  R. Stradling InSb-based materials for detectors , 1991 .

[8]  J. W. Harrison,et al.  Alloy scattering and high field transport in ternary and quaternary III–V semiconductors , 1978 .

[9]  D. Kisker,et al.  Molecular beam epitaxial growth of In1−xGaxAs1−ySby lattice matched to GaSb , 1985 .

[10]  S. Bedair,et al.  Growth of InAs1−xSbx (0, 1985 .

[11]  S. Bedair,et al.  Growth of InSb and InAs(1-x)Sb(x) by OM-CVD , 1984 .

[12]  J. Woolley,et al.  Electrical properties of InAsxSb1−x alloys , 1968 .

[13]  H. H. Wieder,et al.  Transport coefficients of InAs epilayers , 1974 .

[14]  R. Wagner,et al.  Magneto-optic and magnetotransport study of InAs/Ga1-xInxSb superlattices , 1993 .

[15]  Renate Egan,et al.  Electron mobility in InAs1−xSbx and the effect of alloy scattering , 1991 .

[16]  Kwong-Kit Choi,et al.  Molecular beam epitaxial growth and optical properties of InAs1−xSbx in 8–12 μm wavelength range , 1987 .

[17]  H. Ehrenreich Band Structure and Transport Properties of Some 3–5 Compounds , 1961 .

[18]  P. Bhattacharya,et al.  Growth and properties of InAsxSb1−x, AlyGa1−ySb, and InAsxSb1−x/AlyGa1−ySb heterostructures , 1991 .

[19]  Growth and optical characterization of InAs1−xSbx(0≤x≤1) on GaAs and on GaAs‐coated Si by molecular beam epitaxy , 1989 .

[20]  K. Wecht,et al.  Long wavelength (3–5 and 8–12 μm) photoluminescence of InAs1−xSbx grown on (100) GaAs by molecular‐beam epitaxy , 1988 .

[21]  A. Rogalski,et al.  Band-to-band recombination in InAs1−xSbx , 1985 .

[22]  J. R. Knight,et al.  Liquid-phase epitaxy of In(As, Sb) on GaSb substrates using antimony-rich melts , 1985 .

[23]  I. Ferguson,et al.  Electrical and magneto-optical of MBE InAs on GaAs , 1992 .

[24]  P. Bhattacharya,et al.  Transport properties of InAsxSb1−x (0≤x≤0.55) on InP grown by molecular‐beam epitaxy , 1990 .

[25]  J. Whinnery,et al.  Hetero‐nipi band filling modulator with laterally interdigital contacts made by shadow mask molecular beam epitaxy regrowth , 1993 .

[26]  G. B. Stringfellow,et al.  Liquid Phase Epitaxial Growth of InAs1 − x Sb x , 1971 .

[27]  L. O. Bubulac,et al.  Backside-illuminated InAsSb/GaSb broadband detectors , 1980 .

[28]  A. Krier,et al.  InAsSb p-n junction light emitting diodes grown by liquid phase epitaxy , 1995 .

[29]  M. Yen Molecular‐beam epitaxial growth and electrical properties of lattice mismatched InAs1−xSbx on (100) GaAs , 1988 .

[30]  Manijeh Razeghi,et al.  DETAILED ANALYSIS OF CARRIER TRANSPORT IN INAS0.3SB0.7 LAYERS GROWN ON GAAS SUBSTRATES BY METALORGANIC CHEMICAL-VAPOR DEPOSITION , 1994 .

[31]  M. Mikhailova,et al.  Type II heterojunctions in the GaInAsSb/GaSb system , 1994 .

[32]  John Lehrer Zyskind,et al.  Liquid‐phase‐epitaxial InAsySb1−y on GaSb substrates using GaInAsSb buffer layers: Growth, characterization, and application to mid‐IR photodiodes , 1987 .

[33]  Walukiewicz Carrier scattering by native defects in heavily doped semiconductors. , 1990, Physical review. B, Condensed matter.

[34]  A. Krier,et al.  Liquid phase epitaxial growth and photoluminescence of InAsSb grown on GaSb substrates from antimony solution , 1993 .

[35]  L. O. Bubulac,et al.  Liquid phase epitaxial growth of InAs1-xSbx on GaSb , 1979 .

[36]  L. Vegard,et al.  Die Konstitution der Mischkristalle und die Raumfüllung der Atome , 1921 .

[37]  R. Stradling Novel semiconductor materials and structures produced by MBE and MOCVD , 1991 .

[38]  I. Ferguson,et al.  Infrared reflection and transmission of undoped and Si-doped InAs grown on GaAs by molecular beam epitaxy , 1993 .

[39]  R. Mertens,et al.  InAsSb light emitting diodes and their applications to infra-red gas sensors , 1993 .

[40]  A. M. Andrews,et al.  Liquid‐phase epitaxial growth of stepwise‐graded InAs1−xSbx–InAs heterostructures , 1976 .

[41]  Gerald B. Stringfellow,et al.  Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy , 1990 .

[42]  K. W. Wecht,et al.  Long-wavelength photoluminescence of InAs1−xSbx(0 , 1988 .

[43]  Y. P. Varshni Temperature dependence of the energy gap in semiconductors , 1967 .