H+ diffusion and electrochemical stability of Li1+x+yAlxTi2−xSiyP3−yO12 glass in aqueous Li/air battery electrolytes

[1]  Kang Xu,et al.  Reaction mechanisms for the limited reversibility of Li–O2 chemistry in organic carbonate electrolytes , 2011 .

[2]  Z. Wen,et al.  A free-standing-type design for cathodes of rechargeable Li–O2 batteries , 2011 .

[3]  Jasim Uddin,et al.  Predicting solvent stability in aprotic electrolyte Li-air batteries: nucleophilic substitution by the superoxide anion radical (O2(•-)). , 2011, The journal of physical chemistry. A.

[4]  Yuhui Chen,et al.  The lithium-oxygen battery with ether-based electrolytes. , 2011, Angewandte Chemie.

[5]  Ping He,et al.  The effect of alkalinity and temperature on the performance of lithium-air fuel cell with hybrid ele , 2011 .

[6]  N. Sammes,et al.  A study on lithium/air secondary batteries-Stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions , 2011 .

[7]  P. Bruce,et al.  Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. , 2011, Journal of the American Chemical Society.

[8]  Haoshen Zhou,et al.  To draw an air electrode of a Li–air battery by pencil , 2011 .

[9]  M. Salomon,et al.  Primary Li-air cell development , 2011 .

[10]  Paul C. Johnson,et al.  A study on lithium/air secondary batteries—Stability of NASICON-type glass ceramics in acid solutions , 2010 .

[11]  Fuminori Mizuno,et al.  Rechargeable Li-Air Batteries with Carbonate-Based Liquid Electrolytes , 2010 .

[12]  Tao Zhang,et al.  Study on lithium/air secondary batteries—Stability of NASICON-type lithium ion conducting glass–ceramics with water , 2009 .

[13]  P. Colomban Proton Conductors: Solids, Membranes and Gels - Materials and Devices , 2008 .

[14]  T. Sakoda,et al.  Electrochemical properties of modified carbon electrodes for electric double layer capacitors , 2008 .

[15]  B. Fang,et al.  Enhanced surface hydrophobisation for improved performance of carbon aerogel electrochemical capacitor , 2007 .

[16]  Joykumar S. Thokchom,et al.  Water Durable Lithium Ion Conducting Composite Membranes from the Li2O - Al2O3 - TiO2 - P2O5 Glass-Ceramic , 2007 .

[17]  I. Stenina,et al.  Lithium and hydrogen ions transport in materials with NASICON structure , 2004 .

[18]  S. Yashonath,et al.  Ion Mobility and Levitation Effect: Anomalous Diffusion in Nasicon-Type Structure , 2002 .

[19]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[20]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[21]  P. Fabry,et al.  NASICON structure for alkaline ion recognition , 1997 .

[22]  B. Mellander,et al.  Determination of proton diffusion in solid electrolytes , 1997 .

[23]  B. Mellander,et al.  fProton conduction and diffusion in Li2SO4 , 1997 .

[24]  J. Sanz,et al.  Lithium mobility in the NASICON-type compound by nuclear magnetic resonance and impedance spectroscopies , 1996 .

[25]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[26]  G. Adachi,et al.  Fast Li⊕ Conducting Ceramic Electrolytes , 1996 .

[27]  S. Feng,et al.  Proton conductivity and humidity-sensing properties at high temperature of the NASICON-based composite material hydrogen zirconium phosphate-zirconium pyrophosphate ceramic (HZr2P3O12.ZrP2O7) , 1993 .

[28]  B. D. Roberts,et al.  On the proton conductor (H3O)Zr2(PO4)3 , 1984 .

[29]  B. D. Roberts,et al.  Preparation of (NH4)Zr2(PO4)3 and HZr2(PO4)3 , 1984 .

[30]  H. Monkhorst,et al.  "Special points for Brillouin-zone integrations"—a reply , 1977 .

[31]  F. Baucke Fundamental and applied electrochemistry at an industrial glass laboratory—an overview , 2011 .

[32]  Jürgen Garche,et al.  Encyclopedia of electrochemical power sources , 2009 .

[33]  E. R. Losilla,et al.  Crystal chemistry and ion conductivity of the Na1 + xTi2 − xAlx(PO4)3(0 ≤ x ≤ 0.9) NASICON series , 2000 .