Additive-Tree Representations

Additive-trees are used to represent objects as “leaves” on a tree, so that the distance on the tree between two leaves reflects the similarity between the objects. Formally, an observed similarity δ is represented by a tree-distance d. As such, additive-trees belong to the descriptive multivariate statistic tradition. Additive-tree representations are useful in a wide variety of domains.

[1]  Fred R. McMorris,et al.  Axioms for consensus functions on undirected phylogenetic trees , 1985 .

[2]  J. P. Barthelemy,et al.  Sur la topologie d'un arbre phylogénétique : aspects théoriques, algorithmes et applications à l'analyse de données textuelles , 1987 .

[3]  S. Boorman,et al.  Metrics on spaces of finite trees , 1973 .

[4]  D. Robinson Comparison of labeled trees with valency three , 1971 .

[5]  A. Dobson Unrooted trees for numerical taxonomy , 1974, Journal of Applied Probability.

[6]  W. DeSarbo,et al.  The representation of three-way proximity data by single and multiple tree structure models , 1984 .

[7]  H. Colonius,et al.  Tree structures for proximity data , 1981 .

[8]  Patrick Suppes,et al.  Basic measurement theory , 1962 .

[9]  N. X. Luong,et al.  Représentations arborées de mesures de dissimilarité , 1986 .

[10]  An Equivalence Theorem , 1972 .

[11]  Hervé Abdi Faces, Prototypes, and Additive Tree Representations , 1986 .

[12]  D. Robinson,et al.  Comparison of phylogenetic trees , 1981 .

[13]  J. Hartigan REPRESENTATION OF SIMILARITY MATRICES BY TREES , 1967 .

[14]  E. Rosch,et al.  Cognition and Categorization , 1980 .

[15]  A. Tversky,et al.  Similarity, separability, and the triangle inequality. , 1982, Psychological review.

[16]  A. Tversky,et al.  Weighting common and distinctive features in perceptual and conceptual judgments , 1984, Cognitive Psychology.

[17]  A. Dress Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: A note on combinatorial properties of metric spaces , 1984 .

[18]  R N Shepard,et al.  Multidimensional Scaling, Tree-Fitting, and Clustering , 1980, Science.

[19]  R. Shepard Representation of structure in similarity data: Problems and prospects , 1974 .

[20]  J. Cunningham,et al.  Free trees and bidirectional trees as representations of psychological distance , 1978 .

[21]  L. Bobisud,et al.  A METRIC FOR CLASSIFICATIONS , 1972 .

[22]  G. Soete A least squares algorithm for fitting additive trees to proximity data , 1983 .

[23]  L. Cavalli-Sforza,et al.  PHYLOGENETIC ANALYSIS: MODELS AND ESTIMATION PROCEDURES , 1967, Evolution; international journal of organic evolution.

[24]  J. Edward Jackson,et al.  The User's Guide to Multidimensional Scaling , 1985 .

[25]  Gildas Brossier,et al.  Approximation des dissimilarités par des arbres additifs , 1985 .

[26]  Amos Tversky,et al.  Studies of similarity , 1978 .

[27]  H. Abdi,et al.  Tree Representations of Associative Structures in Semantic and Episodic Memory Research , 1984 .

[28]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[29]  P. Buneman The Recovery of Trees from Measures of Dissimilarity , 1971 .

[30]  A. G. Goldstein,et al.  Facial stereotypes of good guys and bad guys: A replication and extension , 1984 .

[31]  Temple F. Smith,et al.  On the similarity of dendrograms. , 1978, Journal of theoretical biology.

[32]  A. Dress,et al.  Reconstructing the shape of a tree from observed dissimilarity data , 1986 .

[33]  Christopher A. Meacham,et al.  A MANUAL METHOD FOR CHARACTER COMPATIBILITY ANALYSIS , 1981 .

[34]  G. Soete Additive-tree representations of incomplete dissimilarity data , 1984 .

[35]  C. Coombs A theory of data. , 1965, Psychology Review.

[36]  Jaap Van Brakel,et al.  Foundations of measurement , 1983 .

[37]  Fred R. McMorris,et al.  COMPARISON OF UNDIRECTED PHYLOGENETIC TREES BASED ON SUBTREES OF FOUR EVOLUTIONARY UNITS , 1985 .

[38]  A. Dress,et al.  Parsimonious phylogenetic trees in metric spaces and simulated annealing , 1987 .

[39]  E. Degreef,et al.  Trends in mathematical psychology , 1984 .

[40]  J. Morgan,et al.  Group Actions On R‐Trees , 1987 .

[41]  A. Tversky,et al.  Extended similarity trees , 1986 .

[42]  J. Farris On Comparing the Shapes of Taxonomic Trees , 1973 .

[43]  S. Chaiken,et al.  An Optimal Diagonal Tree Code , 1983 .

[44]  N. X. Luong,et al.  Methodes d'analyse arboree. Algorithmes. Applications , 1988 .

[45]  W. A. Beyer,et al.  Additive evolutionary trees. , 1977, Journal of theoretical biology.

[46]  A. Young,et al.  Aspects of face processing , 1986 .

[47]  James Turner,et al.  A Survey of Progress in Graph Theory in the Soviet Union , 1970 .

[48]  C. Meacham A probability measure for character compatibility , 1981 .

[49]  Eugene Galanter,et al.  Handbook of mathematical psychology: I. , 1963 .

[50]  S. S. Yau,et al.  Distance matrix of a graph and its realizability , 1965 .

[51]  F. T. Boesch,et al.  Properties of the distance matrix of a tree , 1969 .

[52]  S. Hakimi,et al.  The distance matrix of a graph and its tree realization , 1972 .

[53]  A. Tversky,et al.  Spatial versus tree representations of proximity data , 1982 .

[54]  M. O. Dayhoff,et al.  Atlas of protein sequence and structure , 1965 .

[55]  Daniel N. Osherson,et al.  New axioms for the contrast model of similarity , 1987 .

[56]  A. K. Dewdney,et al.  Diagonal Tree Codes , 1979, Inf. Control..

[57]  A. Tversky Features of Similarity , 1977 .

[58]  E. Rosch ON THE INTERNAL STRUCTURE OF PERCEPTUAL AND SEMANTIC CATEGORIES1 , 1973 .

[59]  P. Buneman A Note on the Metric Properties of Trees , 1974 .

[60]  E. Rosch Cognitive Representations of Semantic Categories. , 1975 .

[61]  N. Henley A psychological study of the semantics of animal terms , 1969 .

[62]  Ye.A Smolenskii A method for the linear recording of graphs , 1963 .

[63]  William H. E. Day,et al.  Analysis of Quartet Dissimilarity Measures Between Undirected Phylogenetic Trees , 1986 .

[64]  F. Moore Cognitive development and the acquisition of language , 1973 .

[65]  Geert De Soete,et al.  Are nonmetric additive-tree representations of numerical proximity data meaningful? , 1983 .

[66]  A. Tversky,et al.  Additive similarity trees , 1977 .

[67]  J. M. S. S. Pereira,et al.  A note on the tree realizability of a distance matrix , 1969 .