Magic state distillation and cost analysis in fault-tolerant universal quantum computation

Magic states have been widely studied in recent years as resource states that help quantum computers achieve fault-tolerant universal quantum computing. The fault-tolerant quantum computing requires fault-tolerant implementation of a set of universal logical gates. Stabilizer code, as a commonly used error correcting code with good properties, can apply the Clifford gates transversally which is fault tolerant. But only Clifford gates cannot realize universal computation. Magic states are introduced to construct non-Clifford gates that combine with Clifford operations to achieve universal quantum computing. Since the preparation of quantum states is inevitably accompanied by noise, preparing the magic state with high fidelity and low overhead is the crucial problem to realizing universal quantum computation. In this paper, we survey the related literature in the past 20 years and introduce the common types of magic states, the protocols to obtain high-fidelity magic states, and overhead analysis for these protocols. Finally, we discuss the future directions of this field.

[1]  A. Sawicki,et al.  Calculable lower bounds on the efficiency of universal sets of quantum gates , 2022, Journal of Physics A: Mathematical and Theoretical.

[2]  Jian-Wei Pan,et al.  Realization of an Error-Correcting Surface Code with Superconducting Qubits. , 2021, Physical review letters.

[3]  C. K. Andersen,et al.  Realizing repeated quantum error correction in a distance-three surface code , 2021, Nature.

[4]  Shijie Wei,et al.  A quantum circuit design of AES requiring fewer quantum qubits and gate operations , 2021, Frontiers of Physics.

[5]  Benjamin J. Brown,et al.  High-fidelity magic-state preparation with a biased-noise architecture , 2021, Physical Review A.

[6]  Jeongwan Haah,et al.  Classification of small triorthogonal codes , 2021, Physical Review A.

[7]  T. R. Scruby,et al.  Universal fault-tolerant quantum computing with stabilizer codes , 2020, Physical Review Research.

[8]  Oscar Higgott,et al.  Subsystem Codes with High Thresholds by Gauge Fixing and Reduced Qubit Overhead , 2020, Physical Review X.

[9]  Benjamin J. Brown,et al.  The XZZX surface code , 2020, Nature Communications.

[10]  Li Li,et al.  Quantum teleportation of physical qubits into logical code spaces , 2020, Proceedings of the National Academy of Sciences.

[11]  Dongdai Lin,et al.  Fault-tolerance thresholds for code conversion schemes with quantum Reed–Muller codes , 2020, Quantum Science and Technology.

[12]  M. Hastings,et al.  Measurement sequences for magic state distillation , 2020, Quantum.

[13]  Kyungjoo Noh,et al.  Very low overhead fault-tolerant magic state preparation using redundant ancilla encoding and flag qubits , 2020, npj Quantum Information.

[14]  K. Brown,et al.  Fault-tolerant compass codes , 2019, Physical Review A.

[15]  Theodore J. Yoder,et al.  Triangular color codes on trivalent graphs with flag qubits , 2019, New Journal of Physics.

[16]  Zhi Ma,et al.  Universal fault-tolerant quantum computation using fault-tolerant conversion schemes , 2019, New Journal of Physics.

[17]  Daniel Litinski,et al.  Magic State Distillation: Not as Costly as You Think , 2019, Quantum.

[18]  Margaret Martonosi,et al.  Resource optimized quantum architectures for surface code implementations of magic-state distillation , 2019, Microprocess. Microsystems.

[19]  Benjamin J. Brown A fault-tolerant non-Clifford gate for the surface code in two dimensions , 2019, Science Advances.

[20]  Mark M. Wilde,et al.  Efficiently computable bounds for magic state distillation , 2018, Physical review letters.

[21]  Christopher T. Chubb,et al.  Tailoring Surface Codes for Highly Biased Noise , 2018, Physical Review X.

[22]  Benjamin J. Brown,et al.  Universal fault-tolerant measurement-based quantum computation , 2018, Physical Review Research.

[23]  J. Tillich,et al.  Towards Low Overhead Magic State Distillation. , 2018, Physical review letters.

[24]  Andrew W. Cross,et al.  Fault-tolerant magic state preparation with flag qubits , 2018, Quantum.

[25]  Hector Bombin,et al.  2D quantum computation with 3D topological codes , 2018, 1810.09571.

[26]  Margaret Martonosi,et al.  Magic-State Functional Units: Mapping and Scheduling Multi-Level Distillation Circuits for Fault-Tolerant Quantum Architectures , 2018, 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[27]  A. Fowler,et al.  Low overhead quantum computation using lattice surgery , 2018, 1808.06709.

[28]  Daniel Litinski,et al.  A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery , 2018, Quantum.

[29]  Alexandru Paler,et al.  Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity , 2018, Physical Review X.

[30]  Ben W. Reichardt,et al.  Fault-tolerant quantum error correction for Steane’s seven-qubit color code with few or no extra qubits , 2018, Quantum Science and Technology.

[31]  D. Browne,et al.  Three-dimensional surface codes: Transversal gates and fault-tolerant architectures , 2018, Physical Review A.

[32]  Craig Gidney,et al.  Halving the cost of quantum addition , 2017, Quantum.

[33]  Jeongwan Haah,et al.  Distillation with Sublogarithmic Overhead. , 2017, Physical review letters.

[34]  Jeongwan Haah,et al.  Codes and Protocols for Distilling T, controlled-S, and Toffoli Gates , 2017, Quantum.

[35]  Earl T. Campbell,et al.  Magic state parity-checker with pre-distilled components , 2017, 1709.02214.

[36]  Margaret Martonosi,et al.  Optimized Surface Code Communication in Superconducting Quantum Computers , 2017, 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[37]  Christopher Chamberland,et al.  FLAG FAULT-TOLERANT ERROR CORRECTION WITH ARBITRARY DISTANCE CODES , 2017, 1708.02246.

[38]  Theodore J. Yoder Universal fault-tolerant quantum computation with Bacon-Shor codes , 2017, 1705.01686.

[39]  Jeongwan Haah,et al.  Magic state distillation with low space overhead and optimal asymptotic input count , 2017, 1703.07847.

[40]  B. Terhal,et al.  Roads towards fault-tolerant universal quantum computation , 2016, Nature.

[41]  Raymond Laflamme,et al.  Overhead analysis of universal concatenated quantum codes , 2016, 1609.07497.

[42]  Daniel Gottesman,et al.  Diagonal gates in the Clifford hierarchy , 2016, 1608.06596.

[43]  Earl T. Campbell,et al.  Unified framework for magic state distillation and multiqubit gate synthesis with reduced resource cost , 2016, 1606.01904.

[44]  Mark Howard,et al.  Unifying Gate Synthesis and Magic State Distillation. , 2016, Physical review letters.

[45]  Earl T. Campbell,et al.  Quantum computation with realistic magic-state factories , 2016, 1605.07197.

[46]  Isaac L. Chuang,et al.  Universal Fault-Tolerant Gates on Concatenated Stabilizer Codes , 2016, 1603.03948.

[47]  Raymond Laflamme,et al.  Thresholds for Universal Concatenated Quantum Codes. , 2016, Physical review letters.

[48]  Mark Howard,et al.  Small codes for magic state distillation , 2015, 1512.04765.

[49]  Byung-Soo Choi,et al.  Fault-tolerant conversion between stabilizer codes by Clifford operations , 2015, 1511.02596.

[50]  Stephen D. Bartlett,et al.  Stacked codes: Universal fault-tolerant quantum computation in a two-dimensional layout , 2015, 1509.04255.

[51]  Simon J. Devitt,et al.  Fault-tolerant, high-level quantum circuits: form, compilation and description , 2015, 1509.02004.

[52]  Hillary Dawkins,et al.  Qutrit Magic State Distillation Tight in Some Directions. , 2015, Physical review letters.

[53]  Mark Howard,et al.  Maximum nonlocality and minimum uncertainty using magic states , 2015, 1501.05319.

[54]  Hayato Goto,et al.  Step-by-step magic state encoding for efficient fault-tolerant quantum computation , 2014, Scientific Reports.

[55]  Ying Li,et al.  A magic state’s fidelity can be superior to the operations that created it , 2014, New Journal of Physics.

[56]  Michael E. Beverland,et al.  Universal transversal gates with color codes: A simplified approach , 2014, 1410.0069.

[57]  Fernando Pastawski,et al.  Fault-tolerant logical gates in quantum error-correcting codes , 2014, 1408.1720.

[58]  Mark Howard,et al.  Order 3 symmetry in the Clifford hierarchy , 2014, 1407.2713.

[59]  Earl T Campbell,et al.  Enhanced fault-tolerant quantum computing in d-level systems. , 2014, Physical review letters.

[60]  David Poulin,et al.  Reducing the quantum-computing overhead with complex gate distillation , 2014, 1403.5280.

[61]  David Poulin,et al.  Fault-tolerant conversion between the Steane and Reed-Muller quantum codes. , 2014, Physical review letters.

[62]  H. Bombin Gauge Color Codes: Optimal Transversal Gates and Gauge Fixing in Topological Stabilizer Codes , 2013, 1311.0879.

[63]  H. Bombin,et al.  An Introduction to Topological Quantum Codes , 2013, 1311.0277.

[64]  Daniel Gottesman,et al.  Fault-tolerant quantum computation with constant overhead , 2013, Quantum Inf. Comput..

[65]  Raymond Laflamme,et al.  Using concatenated quantum codes for universal fault-tolerant quantum gates. , 2013, Physical review letters.

[66]  Adam Paetznick,et al.  Universal fault-tolerant quantum computation with only transversal gates and error correction. , 2013, Physical review letters.

[67]  Cody Jones,et al.  Composite Toffoli gate with two-round error detection , 2013, 1303.6971.

[68]  Andrew J. Landahl,et al.  Complex instruction set computing architecture for performing accurate quantum $Z$ rotations with less magic , 2013, 1302.3240.

[69]  Simon J. Devitt,et al.  Surface code implementation of block code state distillation , 2013, Scientific Reports.

[70]  Cody Jones,et al.  Low-overhead constructions for the fault-tolerant Toffoli gate , 2012, 1212.5069.

[71]  Bryan Eastin,et al.  Distilling one-qubit magic states into Toffoli states , 2012, 1212.4872.

[72]  Austin G. Fowler,et al.  Time-optimal quantum computation , 2012, 1210.4626.

[73]  Cody Jones,et al.  Multilevel distillation of magic states for quantum computing , 2012, 1210.3388.

[74]  S. Bravyi,et al.  Magic-state distillation with low overhead , 2012, 1209.2426.

[75]  A. Fowler,et al.  A bridge to lower overhead quantum computation , 2012, 1209.0510.

[76]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[77]  Yazhen Wang Quantum Computation and Quantum Information , 2012, 1210.0736.

[78]  Sergey Bravyi,et al.  Classification of topologically protected gates for local stabilizer codes. , 2012, Physical review letters.

[79]  Raymond Laflamme,et al.  The robustness of magic state distillation against errors in Clifford gates , 2012, Quantum Inf. Comput..

[80]  D. Browne,et al.  Magic-State Distillation in All Prime Dimensions Using Quantum Reed-Muller Codes , 2012, 1205.3104.

[81]  Emanuel Knill,et al.  Magic-state distillation with the four-qubit code , 2012, Quantum Inf. Comput..

[82]  T. Gao,et al.  Perfect NOT and conjugate transformations , 2012, AAPPS Bulletin.

[83]  D. Browne,et al.  Qutrit magic state distillation , 2012, 1202.2326.

[84]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[85]  Austin G. Fowler,et al.  Towards practical classical processing for the surface code. , 2011, Physical review letters.

[86]  Ben Reichardt,et al.  Fault-tolerant ancilla preparation and noise threshold lower bounds for the 23-qubit Golay code , 2011, Quantum Inf. Comput..

[87]  Akihiro Munemasa,et al.  On triply even binary codes , 2010, J. Lond. Math. Soc..

[88]  R. V. Meter,et al.  Layered architecture for quantum computing , 2010, 1010.5022.

[89]  Austin G. Fowler,et al.  Quantum computing with nearest neighbor interactions and error rates over 1 , 2010, 1009.3686.

[90]  Austin G. Fowler,et al.  Surface code quantum error correction incorporating accurate error propagation , 2010, Quantum Inf. Comput..

[91]  M. Freedman,et al.  A Blueprint for a Topologically Fault-tolerant Quantum Computer , 2010, 1003.2856.

[92]  S. Perseguers,et al.  Fidelity threshold for long-range entanglement in quantum networks , 2009, 0910.1459.

[93]  H. Bombin,et al.  Topological subsystem codes , 2009, 0908.4246.

[94]  H. Bombin,et al.  Self-correcting quantum computers , 2009, 0907.5228.

[95]  Earl T. Campbell,et al.  On the Structure of Protocols for Magic State Distillation , 2009, TCQ.

[96]  Bryan Eastin,et al.  Restrictions on transversal encoded quantum gate sets. , 2008, Physical review letters.

[97]  Yang Liu,et al.  ANALYTIC ONE-BIT AND CNOT GATE CONSTRUCTIONS OF GENERAL n-QUBIT CONTROLLED GATES , 2008 .

[98]  A. Fowler,et al.  High-threshold universal quantum computation on the surface code , 2008, 0803.0272.

[99]  Andrew W. Cross,et al.  Subsystem stabilizer codes cannot have a universal set of transversal gates for even one encoded qudit , 2008, 0801.2360.

[100]  Andrew W. Cross,et al.  Transversality Versus Universality for Additive Quantum Codes , 2007, IEEE Transactions on Information Theory.

[101]  M. A. Martin-Delgado,et al.  Quantum measurements and gates by code deformation , 2007, 0704.2540.

[102]  R. Raussendorf,et al.  Topological fault-tolerance in cluster state quantum computation , 2007, quant-ph/0703143.

[103]  Stan Gudder,et al.  Mathematical Theory of Duality Quantum Computers , 2007, Quantum Inf. Process..

[104]  R. Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2006, Physical review letters.

[105]  Andrew W. Cross,et al.  Subsystem fault tolerance with the Bacon-Shor code. , 2006, Physical review letters.

[106]  H. Bombin,et al.  Topological computation without braiding. , 2006, Physical review letters.

[107]  Ben Reichardt,et al.  Quantum universality by state distillation , 2006, Quantum Inf. Comput..

[108]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[109]  Long Gui-lu,et al.  General Quantum Interference Principle and Duality Computer , 2006 .

[110]  C. Eliasmith,et al.  Fault-tolerant Quantum Computation , 1995 .

[111]  D. DiVincenzo,et al.  Noise threshold for a fault-tolerant two-dimensional lattice architecture , 2006, Quantum Inf. Comput..

[112]  G. Long General Quantum Interference Principle and Duality Computer , 2005, quant-ph/0512120.

[113]  D. Poulin Stabilizer formalism for operator quantum error correction. , 2005, Physical review letters.

[114]  Ben Reichardt,et al.  Quantum Universality from Magic States Distillation Applied to CSS Codes , 2005, Quantum Inf. Process..

[115]  D. Bacon Operator quantum error-correcting subsystems for self-correcting quantum memories , 2005, quant-ph/0506023.

[116]  J. Preskill,et al.  Quantum accuracy threshold for concatenated distance-3 codes , 2005, Quantum Inf. Comput..

[117]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[118]  E. Knill Fault-Tolerant Postselected Quantum Computation: Threshold Analysis , 2004, quant-ph/0404104.

[119]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[120]  E. Knill Fault-Tolerant Postselected Quantum Computation: Schemes , 2004, quant-ph/0402171.

[121]  H. Briegel,et al.  Entanglement purification for quantum computation. , 2002, Physical review letters.

[122]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[123]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[124]  William J. Cook,et al.  Computing Minimum-Weight Perfect Matchings , 1999, INFORMS J. Comput..

[125]  M. Freedman,et al.  Projective Plane and Planar Quantum Codes , 1998, Found. Comput. Math..

[126]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[127]  A. Steane Space, Time, Parallelism and Noise Requirements for Reliable Quantum Computing , 1997, quant-ph/9708021.

[128]  A. Kitaev,et al.  Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[129]  P. Heijnen,et al.  Generalized Hamming weights of q-ary Reed-Muller codes , 1997, Proceedings of IEEE International Symposium on Information Theory.

[130]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[131]  I. Fuss,et al.  Quantum Reed-Muller codes , 1997, quant-ph/9703045.

[132]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[133]  M. Ben-Or,et al.  Fault-tolerant quantum computation with constant error , 1996, STOC '97.

[134]  E. Knill,et al.  Threshold Accuracy for Quantum Computation , 1996, quant-ph/9610011.

[135]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[136]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[137]  DiVincenzo,et al.  Fault-Tolerant Error Correction with Efficient Quantum Codes. , 1996, Physical review letters.

[138]  Laflamme,et al.  Perfect Quantum Error Correction Code , 1996, quant-ph/9602019.

[139]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[140]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[141]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[142]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[143]  Jean-Marie Goethals,et al.  On Generalized Reed-Muller Codes and Their Relatives , 1970, Inf. Control..

[144]  E. J. Weldon,et al.  New generalizations of the Reed-Muller codes-II: Nonprimitive codes , 1968, IEEE Trans. Inf. Theory.

[145]  Tadao Kasami,et al.  New generalizations of the Reed-Muller codes-I: Primitive codes , 1968, IEEE Trans. Inf. Theory.

[146]  Krysta Marie Svore,et al.  Distillation of Non-Stabilizer States for Universal Quantum Computation , 2013, TQC.

[147]  Neil J. A. Sloane,et al.  The theory of error-correcting codes (north-holland , 1977 .