Some 'converses' to intrinsic linking theorems

A low-dimensional version of our main result is the following `converse' of the Conway-Gordon-Sachs Theorem on intrinsic linking of the graph $K_6$ in 3-space: For any integer $z$ there are 6 points $1,2,3,4,5,6$ in 3-space, of which every two $i,j$ are joint by a polygonal line $ij$, the interior of one polygonal line is disjoint with any other polygonal line, the linking coefficient of any pair disjoint 3-cycles except for $\{123,456\}$ is zero, and for the exceptional pair $\{123,456\}$ is $2z+1$. We prove a higher-dimensional analogue, which is a `converse' of a lemma by Segal-Spiez.

[1]  John H. Conway,et al.  Knots and links in spatial graphs , 1983, J. Graph Theory.

[2]  A. Skopenkov Surveys in Contemporary Mathematics: Embedding and knotting of manifolds in Euclidean spaces , 2006, math/0604045.

[3]  Jack Segal,et al.  Quasi embeddings and embeddings of polyhedra in Rm , 1992 .

[4]  C. Weber Plongements de polyèdres dans le domaine métastable , 1967 .

[5]  Martin Tancer,et al.  Hardness of almost embedding simplicial complexes in $$\mathbb {R}^d$$Rd , 2017, Discret. Comput. Geom..

[6]  A. Skopenkov Extendability of simplicial maps is undecidable , 2020, ArXiv.

[7]  J. Matousek,et al.  Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry , 2007 .

[8]  Arkadiy Skopenkov,et al.  Realizability of hypergraphs and Ramsey link theory , 2014 .

[9]  Dušan Repovš,et al.  New results on embeddings of polyhedra and manifolds in Euclidean spaces , 1999 .

[10]  A. Skopenkov,et al.  On the Haefliger-Hirsch-Wu invariants for embeddings and immersions , 2002 .

[11]  Uli Wagner,et al.  Embeddability of Simplicial Complexes is Undecidable , 2020, SODA.

[12]  Mikhail Skopenkov,et al.  Some short proofs of the nonrealizability of hypergraphs , 2014 .

[13]  Martin Tancer,et al.  Hardness of almost embedding simplicial complexes in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$ , 2018, Discrete & Computational Geometry.

[14]  A. Skopenkov,et al.  On the deleted product criterion for embeddability in $\mathbb R^m$ , 1998 .