An elementary and unified proof of Grothendieck’s inequality

We present an elementary, self-contained proof of Grothendieck's inequality that unifies both the real and complex cases and yields both the Krivine and Haagerup bounds, the current best-known bounds for the real and complex Grothendieck constants respectively.

[1]  Theo M. Nieuwenhuizen,et al.  The Bell Inequalities , 2012 .

[2]  Jinjie Zhang,et al.  Grothendieck constant is norm of Strassen matrix multiplication tensor , 2017, Numerische Mathematik.

[3]  Subhash Khot,et al.  Grothendieck‐Type Inequalities in Combinatorial Optimization , 2011, ArXiv.

[4]  F. Albiac,et al.  Topics in Banach space theory , 2006 .

[5]  J. Krivine Constantes de Grothendieck et fonctions de type positif sur les sphères , 1979 .

[6]  Y. Nesterov Semidefinite relaxation and nonconvex quadratic optimization , 1998 .

[7]  N. Gisin,et al.  Grothendieck's constant and local models for noisy entangled quantum states , 2006, quant-ph/0606138.

[8]  Gilles Pisier,et al.  Grothendieck’s theorem for operator spaces , 2001, math/0108205.

[9]  Moses Charikar,et al.  Maximizing quadratic programs: extending Grothendieck's inequality , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[10]  Joe Diestel,et al.  The metric theory of tensor products , 2008 .

[11]  T. V'ertesi,et al.  Qutrit witness from the Grothendieck constant of order four , 2017, 1707.04719.

[12]  G. Pisier Grothendieck's Theorem, past and present , 2011, 1101.4195.

[13]  J. Diestel,et al.  Absolutely Summing Operators , 1995 .

[14]  Frank Vallentin,et al.  The Positive Semidefinite Grothendieck Problem with Rank Constraint , 2009, ICALP.

[15]  Mark Braverman,et al.  The Grothendieck Constant is Strictly Smaller than Krivine's Bound , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[16]  G. Pisier Factorization of Linear Operators and Geometry of Banach Spaces , 1986 .

[17]  B. Tsirelson Some results and problems on quan-tum Bell-type inequalities , 1993 .

[18]  Lek-Heng Lim Tensors and Hypermatrices , 2013 .

[19]  B. Maurey,et al.  Une nouvelle démonstration d'un théorème de Grothendieck , 1973 .

[20]  M. Ziegler Volume 152 of Graduate Texts in Mathematics , 1995 .

[21]  Nathan Linial,et al.  Lower bounds in communication complexity based on factorization norms , 2007, STOC '07.

[22]  Guy Kindler,et al.  The UGC hardness threshold of the ℓp Grothendieck problem , 2008, SODA '08.

[23]  Hoshang Heydari,et al.  Quantum correlation and Grothendieck's constant , 2006 .

[24]  W. Bowen,et al.  Philadelphia , 1892 .

[25]  A. Grothendieck Résumé de la théorie métrique des produits tensoriels topologiques , 1996 .

[26]  Noga Alon,et al.  Approximating the cut-norm via Grothendieck's inequality , 2004, STOC '04.

[27]  Noga Alon,et al.  The Grothendieck constant of random and pseudo-random graphs , 2008, Discret. Optim..

[28]  Guy Kindler,et al.  On non-approximability for quadratic programs , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[29]  B. S. Cirel'son Quantum generalizations of Bell's inequality , 1980 .

[30]  Marco T'ulio Quintino,et al.  Better local hidden variable models for two-qubit Werner states and an upper bound on the Grothendieck constant $K_G(3)$ , 2016, 1609.06114.

[31]  Oded Regev,et al.  Bell violations through independent bases games , 2011, Quantum Inf. Comput..

[32]  Uffe Haagerup,et al.  The Grothendieck inequality for bilinear forms on C∗-algebras , 1985 .

[33]  Peter C. Fishburn,et al.  Bell Inequalities, Grothendieck's Constant, and Root Two , 1994, SIAM J. Discret. Math..

[34]  Sten Kaijser,et al.  A simple-minded proof of the Pisier-grothendieck inequality , 1983 .

[35]  Shmuel Friedland,et al.  Linear Algebra and Matrices , 2018 .

[36]  Noga Alon,et al.  Quadratic forms on graphs , 2005, STOC '05.

[37]  Prasad Raghavendra,et al.  Towards computing the Grothendieck constant , 2009, SODA.

[38]  J. Lindenstrauss,et al.  Absolutely summing operators in Lp spaces and their applications , 1968 .

[39]  H. Buhrman,et al.  A Generalized Grothendieck Inequality and Nonlocal Correlations that Require High Entanglement , 2011 .

[40]  G. Pisier Grothendieck’s Theorem , 1986 .

[41]  Hermann König,et al.  On an Extremal Problem Originating in Questions of Unconditional Convergence , 2001 .

[42]  Quanhua Xu Operator-space Grothendieck inequalities for noncommutative $L_p$-spaces , 2005, math/0505306.

[43]  Subhash Khot,et al.  Sharp kernel clustering algorithms and their associated Grothendieck inequalities , 2009, SODA '10.

[44]  R. Blei,et al.  An elementary proof of the Grothendieck inequality , 1987 .

[45]  Prasad Raghavendra,et al.  Optimal algorithms and inapproximability results for every CSP? , 2008, STOC.

[46]  Joram Lindenstrauss,et al.  Classical Banach spaces , 1973 .

[47]  H. König Geometry of Banach Spaces: On the complex Grothendieck constant in the n-dimensional case , 1991 .

[48]  Oded Regev,et al.  Simulating Quantum Correlations with Finite Communication , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[49]  A. M. Davie,et al.  Matrix norms related to Grothendieck's inequality , 1985 .

[50]  Gilles Pisier Grothendieck's theorem for noncommutative C∗-algebras, with an Appendix on Grothendieck's constants , 1978 .

[51]  R. Rietz A proof of the Grothendieck inequality , 1974 .

[52]  U. Haagerup A new upper bound for the complex Grothendieck constant , 1987 .

[53]  G. Jameson Summing and nuclear norms in Banach space theory , 1987 .