The Critical Behavior of the Spin-1 Ising Model with a Bimodal Random Crystal Field: Renormalization Group Study

[1]  J. R. de Sousa,et al.  First-order transition of the spin-1 Blume–Capel model with random anisotropy using effective-field theory , 2023, Physica A: Statistical Mechanics and its Applications.

[2]  E. Albayrak ±J Blume–Capel Model with external magnetic field in the cluster variation method , 2021 .

[3]  M. Ertaş Dynamic magnetic properties in 2-dimensional kinetic spin-7/2 Ising system , 2020 .

[4]  E. Albayrak The random field Blume-Capel model on the Bethe lattice , 2020 .

[5]  A. Benyoussef,et al.  Effects of a random single-ion anisotropy on the spin-52 Blume-Capel (BC) Ising model , 2020 .

[6]  Fatma Özcan,et al.  Mixed Spin-1/2 and 5/2 Blume-Capel Model on the Bethe Lattice in the ± J Distribution with an Adjusting Parameter , 2020, Journal of Superconductivity and Novel Magnetism.

[7]  M. Bouziani,et al.  Random crystal-field effects in a mixed spin-1/2 and spin-2 ferrimagnetic Ising system , 2018, Chinese Journal of Physics.

[8]  M. Kerouad,et al.  Effects of the Random Crystal Field on the Phase Diagrams and the Magnetic Properties of a Spin-1 Blume-Capel Nanoisland , 2018 .

[9]  A. Alrajhi,et al.  The spin-2 Blume-Capel model by position space renormalization group , 2017 .

[10]  M. Ertaş,et al.  Effect of the Hamiltonian parameters on the hysteresis properties of the kinetic mixed spin (1/2, 1) Ising ferrimagnetic model on a hexagonal lattice , 2017 .

[11]  M. Ertaş Dynamic Properties of Kinetic Spin-3/2 Ising Ferromagnetic Model in the Presence of the Crystal and External Oscillating Magnetic Fields , 2017 .

[12]  M. Ertaş,et al.  Effect of the Hamiltonian parameters on Blume-Capel Ising ferromagnet system with single-ion anisotropy , 2016 .

[13]  Sumedha,et al.  Absence of first order transition in the random crystal field Blume–Capel model on a fully connected graph , 2016, 1608.03693.

[14]  M. Kerouad,et al.  A Monte Carlo study of the Blume–Capel thin film in the presence of a random crystal field , 2016 .

[15]  J. Ara'ujo,et al.  Mean-field solution of the Blume–Capel model under a random crystal field , 2014, 1412.0606.

[16]  M. Keskin,et al.  Effective-field theory for dynamic phase diagrams of the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field , 2013 .

[17]  M. Bouziani,et al.  The two- and three-dimensional spin-3/2 random Blume–Capel model by the position space renormalization group , 2013 .

[18]  M. Keskin,et al.  Dynamic phase diagrams of the Blume-Capel model in an oscillating field by the path probability method , 2013, 1302.6769.

[19]  A. Jellal,et al.  Position space renormalization group study of the spin-1 random semi-infinite Blume–Capel model , 2013 .

[20]  E. Albayrak Spin-1 Blume–Capel model with random crystal field effects , 2013 .

[21]  H. Polat,et al.  Critical behavior and phase diagrams of a spin-1 Blume–Capel model with random crystal field interactions: An effective field theory analysis , 2011, 1107.4194.

[22]  M. Kerouad,et al.  Monte Carlo study of a mixed spin-1/2 and spin-1 Blume-Capel ferrimagnetic model with four-spin interaction , 2009 .

[23]  A. Benyoussef,et al.  Study of the mixed Ising spins (1/2,3/2) in a random crystal field , 2008, 0810.4128.

[24]  A. Benyoussef,et al.  Random crystal-field effect on the spin-3/2 Blume–Capel model , 2008 .

[25]  J. B. Santos-Filho,et al.  Monte Carlo studies of the cubic lattice mixed-bond Ising model , 2007 .

[26]  N. O. Moreno,et al.  Phase diagram and tricritical behavior of an Ising metamagnet model in a trimodal random field , 2007 .

[27]  A. Benyoussef,et al.  Monte Carlo study of order–disorder layering transitions in the Blume–Capel model , 2003, cond-mat/0306536.

[28]  C. Carneiro,et al.  Global mean-field phase diagram of the spin-1 Ising ferromagnet in a random crystal field , 1996 .

[29]  A. Berker,et al.  Dimensionality effects on the multicritical phase diagrams of the Blume-Emery-Griffiths model with repulsive biquadratic coupling: Mean-field and renormalization-group studies , 1991 .

[30]  A. Benyoussef,et al.  The spin-1 Ising model with a random crystal field: the mean-field solution , 1987 .

[31]  B. P. Watson,et al.  Renormalization group approach for percolation conductivity , 1976 .

[32]  A. B. Harris,et al.  Effect of random defects on the critical behaviour of Ising models , 1974 .

[33]  H. Capel On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field , 1966 .

[34]  G. Shirane,et al.  First‐Order Magnetic Transition in UO2 , 1966 .