On the melting behaviour of uranium/plutonium mixed dioxides with high-Pu content: A laser heating study

Abstract The melting behaviour of mixed uranium–plutonium dioxides (MOX) has been investigated by laser heating under controlled atmosphere in the PuO 2 -rich composition range (with amount-of-substance fraction x (PuO 2 ) ⩾75%). The observed solidus/liquidus points are in agreement with the newly measured melting point of pure plutonium dioxide (3017 K). They suggest the existence of a minimum freezing temperature at a composition x (PuO 2 ) between 50% and 80%, in contrast with earlier research carried out with traditional furnace heating methods. The current results have been obtained under optimised experimental conditions aimed at maintaining the integrity and original composition of the samples throughout the laser heating cycles. With this goal in mind, experiments have been carried out under controlled gas pressure (pressurised air or argon) and short time duration ( 2− x compositions in equilibrium with the gas phase.

[1]  Theodore M. Besmann,et al.  Chemical thermodynamic representations of 〈PuO2−x〉 and 〈U1−zPuzOw〉 , 1985 .

[2]  F. Pavese,et al.  Recommended values of temperature on the International Temperature Scale of 1990 for a selected set of secondary reference points , 1996 .

[3]  K. Konashi,et al.  Oxygen potentials of plutonium and uranium mixed oxide , 2005 .

[4]  N. N. Greenwood,et al.  Chemistry of the elements , 1984 .

[5]  K. Wagner,et al.  Bestimmung der optischen konstanten von geschmolzenen kernbrennstoffen , 1984 .

[6]  A. Nakamura A defect-thermodynamic approach to PuO2−x and CeO2−x , 1993 .

[7]  M. Sheindlin,et al.  Urania Vapor Composition at Very High Temperatures , 2011 .

[8]  G. Schumacher,et al.  Redistribution of plutonium and uranium in mixed (U, Pu) oxide fuel materials in a thermal gradient , 1971 .

[9]  Dario Manara,et al.  The melting behaviour of plutonium dioxide: A laser-heating study , 2011 .

[10]  Christine Guéneau,et al.  Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the U–Pu–O–C systems , 2011 .

[11]  Dario Manara,et al.  New techniques for high-temperature melting measurements in volatile refractory materials via laser surface heating. , 2008, The Review of scientific instruments.

[12]  R. W. Ohse Laser application in high temperature materials , 1988 .

[13]  D. Djurović,et al.  Thermodynamic modelling of the cerium–oxygen system , 2006 .

[14]  Juan J. Carbajo,et al.  A review of the thermophysical properties of MOX and UO , 2001 .

[15]  E. R. Gardner,et al.  The plutonium-oxygen phase diagram , 1965 .

[16]  Christine Guéneau,et al.  Thermodynamic modelling of the plutonium–oxygen system , 2008 .

[17]  M. Ripert,et al.  Oxidation of plutonium dioxide: an X-ray absorption spectroscopy study , 2003 .

[18]  K. Konashi,et al.  Effect of Oxygen-to-Metal Ratio on Melting Temperature of Uranium and Plutonium Mixed Oxide Fuel for Fast Reactor , 2008 .

[19]  E. A. Fischer,et al.  Extension of vapour pressure measurements of nuclear fuels (U, Pu)O2 and UO2 to 7000 K for fast reactor safety analysis , 1976 .

[20]  Christine Guéneau,et al.  Thermodynamic assessment of the uranium–oxygen system , 2002 .

[21]  Dario Manara,et al.  Melting of Stoichiometric and Hyperstoichiometric Uranium Dioxide , 2005 .

[22]  G. Schumacher,et al.  Redistribution of uranium and plutonium during evaporation processes in mixed oxide fuel , 1971 .

[23]  D. Manara,et al.  Reassessing the melting temperature of PuO2 , 2010 .

[24]  T. Lindemer Chemical thermodynamic representation of very nonstoichiometric phases: 〈Ceo2−x〉☆☆☆ , 1986 .

[25]  W. E. Baily,et al.  The solid-liquid phase diagram for the UO2-PuO2 system☆ , 1967 .

[26]  Masato Kato,et al.  Solidus and liquidus temperatures in the UO2–PuO2 system , 2008 .