The bias from heaping on risk estimation: Effect of age at diagnosis of hypertension on risk of subsequent cardiovascular comorbidities.

[1]  Gretchen A. Stevens,et al.  Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants , 2021, The Lancet.

[2]  W. Sha,et al.  Association between high blood pressure and long term cardiovascular events in young adults: systematic review and meta-analysis , 2020, BMJ.

[3]  Shuohua Chen,et al.  Association of Age of Onset of Hypertension With Cardiovascular Diseases and Mortality. , 2020, Journal of the American College of Cardiology.

[4]  G. Howard,et al.  The association of hypertension, hypertension duration, and control with incident heart failure in black and white adults , 2020, Journal of clinical hypertension.

[5]  J. Lima,et al.  Self-reported Age of Hypertension Onset and Hypertension-Mediated Organ Damage in Middle-Aged Individuals , 2020, American journal of hypertension.

[6]  H. Völzke,et al.  Erfassung selbst berichteter kardiovaskulärer und metabolischer Erkrankungen in der NAKO Gesundheitsstudie: Methoden und erste Ergebnisse , 2020, Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz.

[7]  L. Akslen,et al.  Terminal digit preference: a source of measurement error in breast cancer diameter reporting , 2020, Acta oncologica.

[8]  Susan Cheng,et al.  Longitudinal blood pressure patterns and cardiovascular disease risk , 2020, Annals of medicine.

[9]  Susan Cheng,et al.  Sex Differences in Blood Pressure Trajectories Over the Life Course. , 2020, JAMA cardiology.

[10]  Yun Gi Kim,et al.  Impact of the Duration and Degree of Hypertension and Body Weight on New-Onset Atrial Fibrillation: A Nationwide Population-Based Study. , 2019, Hypertension.

[11]  J. Lima,et al.  Early Onset Hypertension Is Associated With Hypertensive End-Organ Damage Already by MidLife. , 2019, Hypertension.

[12]  M. Woodward,et al.  Sex differences in risk factors for myocardial infarction: cohort study of UK Biobank participants , 2018, British Medical Journal.

[13]  C. Schmidt,et al.  Erfassung inzidenter kardiovaskulärer und metabolischer Erkrankungen in epidemiologischen Kohortenstudien in Deutschland , 2018, Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz.

[14]  Michael J Crowther,et al.  Using simulation studies to evaluate statistical methods , 2017, Statistics in medicine.

[15]  D. Jacobs,et al.  Cumulative Blood Pressure in Early Adulthood and Cardiac Dysfunction in Middle Age: The CARDIA Study. , 2015, Journal of the American College of Cardiology.

[16]  Harry Hemingway,et al.  Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1·25 million people , 2014, The Lancet.

[17]  German National Cohort Consortium,et al.  The German National Cohort: aims, study design and organization , 2014, European Journal of Epidemiology.

[18]  Marc A Suchard,et al.  SEX, LIES AND SELF-REPORTED COUNTS: BAYESIAN MIXTURE MODELS FOR HEAPING IN LONGITUDINAL COUNT DATA VIA BIRTH-DEATH PROCESSES. , 2014, The annals of applied statistics.

[19]  Haim Y Bar,et al.  Accounting for heaping in retrospectively reported event data – a mixture‐model approach , 2012, Statistics in medicine.

[20]  Patrick Royston,et al.  Analysing covariates with spike at zero: A modified FP procedure and conceptual issues , 2012, Biometrical journal. Biometrische Zeitschrift.

[21]  Hans Schneeweiss,et al.  Symmetric and asymmetric rounding: a review and some new results , 2010 .

[22]  Hao Wang,et al.  Modeling heaping in self‐reported cigarette counts , 2008, Statistics in medicine.

[23]  Diederick E Grobbee,et al.  Comparison of routine care self-reported and biometrical data on hypertension and diabetes: results of the Utrecht Health Project. , 2007, European journal of public health.

[24]  Douglas G Altman,et al.  Dichotomizing continuous predictors in multiple regression: a bad idea , 2006, Statistics in medicine.

[25]  Douglas W Mahoney,et al.  Agreement between self-report questionnaires and medical record data was substantial for diabetes, hypertension, myocardial infarction and stroke but not for heart failure. , 2004, Journal of clinical epidemiology.

[26]  H. Hense,et al.  Hypertension prevalence and blood pressure levels in 6 European countries, Canada, and the United States. , 2003, JAMA.

[27]  R. Vasan,et al.  The progression from hypertension to congestive heart failure. , 1996, JAMA.

[28]  D. Levy,et al.  Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. , 1994, JAMA.

[29]  J A Hanley,et al.  Terminal digit preference, random error, and bias in routine clinical measurement of blood pressure. , 1993, Journal of clinical epidemiology.

[30]  A. Donner,et al.  The prognosis of hypertension according to age at onset. , 1987, Hypertension.