Interplay of two small RNAs fine-tunes hierarchical flagellar gene expression in the foodborne pathogen Campylobacter jejuni

Like for many enteric bacteria, flagella are a crucial virulence factor for the foodborne pathogen Campylobacter jejuni, allowing the bacteria to move through the viscous mucus of the human intestine. Assembly of the complex flagellar machinery and filament requires hierarchical regulation via transcriptional control of each component. In C. jejuni, class I genes are transcribed from σ70-dependent promoters and class II/III genes with the help of the alternative sigma factors RpoN (σ54) and FliA (σ28). In contrast to transcriptional control, less is known about post-transcriptional regulation of flagellar biosynthesis cascades via small regulatory RNAs (sRNAs). Here, we characterized two sRNAs with opposing effects on the cascade that fine-tune C. jejuni flagellar filament assembly and thereby impact motility. We demonstrate that the highly conserved Campylobacter sRNA CJnc230 (FlmE, flagellar length and motility enhancer), encoded downstream of the flagellar hook structural protein FlgE, is dependent on RpoN and that RNase III processes CJnc230 from the flgE mRNA, while RNase Y and PNPase mature its 3’ end. We identify mRNAs encoding a regulator of flagella-flagella interactions and the anti-σ28 factor FlgM as direct targets of CJnc230 repression. Overexpression of CJnc230 de-represses FliA activity and upregulates class III flagellar genes, such as the major flagellin flaA, culminating in longer flagella and increased motility. In contrast, overexpression of the FliA-dependent sRNA CJnc170 (FlmR, flagellar length and motility repressor) reduces flagellar length and motility. Overall, our study demonstrates sRNA-mediated post-transcriptional regulation fine-tunes C. jejuni flagellar biosynthesis through balancing of the hierarchically expressed components.

[1]  S. Melamed,et al.  Small RNAs, Large Networks: Posttranscriptional Regulons in Gram-Negative Bacteria. , 2023, Annual review of microbiology.

[2]  Gene-Wei Li,et al.  A high-resolution view of RNA endonuclease cleavage in Bacillus subtilis , 2023, bioRxiv.

[3]  R. Backofen,et al.  Complementary Ribo-seq approaches map the translatome and provide a small protein census in the foodborne pathogen Campylobacter jejuni , 2022, bioRxiv.

[4]  J. Vogel,et al.  Ushering in a new era of single-cell transcriptomics in bacteria , 2022, microLife.

[5]  J. Plumbridge,et al.  Regulatory Interplay between RNase III and Antisense RNAs in E. coli: the Case of AsflhD and FlhD, Component of the Master Regulator of Motility , 2022, mBio.

[6]  M. Wilkins,et al.  RNase III-CLASH of multi-drug resistant Staphylococcus aureus reveals a regulatory mRNA 3′UTR required for intermediate vancomycin resistance , 2022, Nature Communications.

[7]  J. Vogel,et al.  An overview of gene regulation in bacteria by small RNAs derived from mRNA 3′ ends , 2022, FEMS microbiology reviews.

[8]  C. Bevins,et al.  Flagella at the Host-Microbe Interface: Key Functions Intersect With Redundant Responses , 2022, Frontiers in Immunology.

[9]  F. Vandenesch,et al.  The 3′UTR‐derived sRNA RsaG coordinates redox homeostasis and metabolism adaptation in response to glucose‐6‐phosphate uptake in Staphylococcus aureus , 2021, Molecular microbiology.

[10]  C. Sharma,et al.  RNase III-mediated processing of a trans-acting bacterial sRNA and its cis-encoded antagonist , 2021, bioRxiv.

[11]  L. Cai,et al.  Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution , 2021, Science.

[12]  V. Sourjik,et al.  Multiple functions of flagellar motility and chemotaxis in bacterial physiology , 2021, FEMS microbiology reviews.

[13]  S. Callahan,et al.  Transcription of Cystathionine β-Lyase (MetC) Is Repressed by HeuR in Campylobacter jejuni, and Methionine Biosynthesis Facilitates Colonocyte Invasion , 2021, Journal of bacteriology.

[14]  O. Sahin,et al.  Role of metAB in Methionine Metabolism and Optimal Chicken Colonization in Campylobacter jejuni , 2020, Infection and Immunity.

[15]  M. Beeby,et al.  Campylobacter jejuni motility integrates specialized cell shape, flagellar filament, and motor, to coordinate action of its opposed flagella , 2020, PLoS pathogens.

[16]  E. Charpentier,et al.  An RNA-seq based comparative approach reveals the transcriptome-wide interplay between 3′-to-5′ exoRNases and RNase Y , 2020, Nature Communications.

[17]  E. Wagner,et al.  Small RNAs OmrA and OmrB promote class III flagellar gene expression by inhibiting the synthesis of anti-Sigma factor FlgM , 2020, RNA biology.

[18]  G. Storz,et al.  Trans-Acting Small RNAs and Their Effects on Gene Expression in Escherichia coli and Salmonella enterica , 2020, EcoSal Plus.

[19]  C. Sharma,et al.  A three-dimensional intestinal tissue model reveals factors and small regulatory RNAs important for colonization with Campylobacter jejuni , 2020, PLoS pathogens.

[20]  G. Storz,et al.  RNA-RNA Interactomes of ProQ and Hfq Reveal Overlapping and Competing Roles. , 2019, Molecular cell.

[21]  F. Vandenesch,et al.  RsaC sRNA modulates the oxidative stress response of Staphylococcus aureus during manganese starvation , 2019, Nucleic acids research.

[22]  U. Endesfelder From single bacterial cell imaging towards in vivo single-molecule biochemistry studies , 2019, Essays in biochemistry.

[23]  D. Bechhofer,et al.  Bacterial ribonucleases and their roles in RNA metabolism , 2019, Critical reviews in biochemistry and molecular biology.

[24]  Christine J. Boinett,et al.  Investigating the Campylobacter jejuni Transcriptional Response to Host Intestinal Extracts Reveals the Involvement of a Widely Conserved Iron Uptake System , 2018, mBio.

[25]  H. Margalit,et al.  In vivo cleavage rules and target repertoire of RNase III in Escherichia coli , 2018, Nucleic acids research.

[26]  A. Westermann Regulatory RNAs in Virulence and Host-Microbe Interactions , 2018, Microbiology spectrum.

[27]  D. Hendrixson,et al.  Campylobacter jejuni: collective components promoting a successful enteric lifestyle , 2018, Nature Reviews Microbiology.

[28]  M. Guillier,et al.  Bacterial Small RNAs in Mixed Regulatory Networks , 2018, Microbiology spectrum.

[29]  Rolf Backofen,et al.  GLASSgo – Automated and Reliable Detection of sRNA Homologs From a Single Input Sequence , 2018, Front. Genet..

[30]  C. Condon,et al.  RNases and Helicases in Gram-Positive Bacteria , 2018, Microbiology spectrum.

[31]  S. Iyoda,et al.  Small RNA Esr41 inversely regulates expression of LEE and flagellar genes in enterohaemorrhagic Escherichia coli. , 2018, Microbiology.

[32]  D. Sack,et al.  Campylobacter jejuni transcriptional and genetic adaptation during human infection , 2018, Nature Microbiology.

[33]  Thorsten Bischler,et al.  CRISPR RNA-Dependent Binding and Cleavage of Endogenous RNAs by the Campylobacter jejuni Cas9. , 2018, Molecular cell.

[34]  M. Wösten,et al.  Importance of Campylobacter jejuni FliS and FliW in Flagella Biogenesis and Flagellin Secretion , 2017, Front. Microbiol..

[35]  Hanah Margalit,et al.  Integration of Bacterial Small RNAs in Regulatory Networks. , 2017, Annual review of biophysics.

[36]  B. Prüß Involvement of Two-Component Signaling on Bacterial Motility and Biofilm Development , 2017, Journal of bacteriology.

[37]  Rolf Backofen,et al.  IntaRNA 2.0: enhanced and customizable prediction of RNA–RNA interactions , 2017, Nucleic Acids Res..

[38]  W. Eisenreich,et al.  Metabolic and fitness determinants for in vitro growth and intestinal colonization of the bacterial pathogen Campylobacter jejuni , 2017, PLoS biology.

[39]  D. Maskell,et al.  A quantitative proteomic screen of the Campylobacter jejuni flagellar-dependent secretome , 2017, Journal of proteomics.

[40]  D. Tollervey,et al.  Small RNA interactome of pathogenic E. coli revealed through crosslinking of RNase E , 2016, The EMBO journal.

[41]  Aldert L. Zomer,et al.  Genome-wide fitness analyses of the foodborne pathogen Campylobacter jejuni in in vitro and in vivo models , 2016, bioRxiv.

[42]  J. Gaddy,et al.  The PAS Domain-Containing Protein HeuR Regulates Heme Uptake in Campylobacter jejuni , 2016, mBio.

[43]  R. Reinhardt,et al.  The CsrA-FliW network controls polar localization of the dual-function flagellin mRNA in Campylobacter jejuni , 2016, Nature Communications.

[44]  Pascale Cossart,et al.  Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria , 2016, Science.

[45]  J. Vogel,et al.  A 3' UTR-Derived Small RNA Provides the Regulatory Noncoding Arm of the Inner Membrane Stress Response. , 2016, Molecular cell.

[46]  N. Speybroeck,et al.  World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010 , 2015, PLoS medicine.

[47]  B. Pearson,et al.  Conservation of σ28-Dependent Non-Coding RNA Paralogs and Predicted σ54-Dependent Targets in Thermophilic Campylobacter Species , 2015, PloS one.

[48]  P. Redder,et al.  Decay-Initiating Endoribonucleolytic Cleavage by RNase Y Is Kept under Tight Control via Sequence Preference and Sub-cellular Localisation , 2015, PLoS genetics.

[49]  David C. Norris,et al.  Integrated genome browser: visual analytics platform for genomics , 2015, bioRxiv.

[50]  P. Periago,et al.  A PAS domain-containing regulator controls flagella-flagella interactions in Campylobacter jejuni , 2015, Front. Microbiol..

[51]  J. Vogel,et al.  Regulatory small RNAs from the 3' regions of bacterial mRNAs. , 2015, Current opinion in microbiology.

[52]  Kay Nieselt,et al.  Global Transcriptional Start Site Mapping Using Differential RNA Sequencing Reveals Novel Antisense RNAs in Escherichia coli , 2014, Journal of bacteriology.

[53]  E. Wagner,et al.  Small RNAs in bacteria and archaea: who they are, what they do, and how they do it. , 2015, Advances in genetics.

[54]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[55]  D. Hendrixson,et al.  Flagellar biosynthesis exerts temporal regulation of secretion of specific Campylobacter jejuni colonization and virulence determinants , 2014, Molecular microbiology.

[56]  C. Arraiano,et al.  The RNase R from Campylobacter jejuni Has Unique Features and Is Involved in the First Steps of Infection* , 2014, The Journal of Biological Chemistry.

[57]  Andrew D. S. Cameron,et al.  Hygromycin B and Apramycin Antibiotic Resistance Cassettes for Use in Campylobacter jejuni , 2014, PloS one.

[58]  Konrad U. Förstner,et al.  READemption – A tool for the computational analysis of deep-sequencing-based transcriptome data , 2014, bioRxiv.

[59]  C. Sharma,et al.  A variable homopolymeric G-repeat defines small RNA-mediated posttranscriptional regulation of a chemotaxis receptor in Helicobacter pylori , 2014, Proceedings of the National Academy of Sciences.

[60]  Wolfgang Huber,et al.  Love MI, Huber W, Anders S.. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol 15: 550 , 2014 .

[61]  Tetsuya Hayashi,et al.  A novel small regulatory RNA enhances cell motility in enterohemorrhagic Escherichia coli. , 2014, The Journal of general and applied microbiology.

[62]  J. Haiko,et al.  The Role of the Bacterial Flagellum in Adhesion and Virulence , 2013, Biology.

[63]  C. Arraiano,et al.  Characterization of the biochemical properties of Campylobacter jejuni RNase III , 2013, Bioscience reports.

[64]  B. Pearson,et al.  Parallel evolution of genome structure and transcriptional landscape in the Epsilonproteobacteria , 2013, BMC Genomics.

[65]  Michael E. Taveirne,et al.  The Complete Campylobacter jejuni Transcriptome during Colonization of a Natural Host Determined by RNAseq , 2013, PloS one.

[66]  Kay Nieselt,et al.  High-Resolution Transcriptome Maps Reveal Strain-Specific Regulatory Features of Multiple Campylobacter jejuni Isolates , 2013, PLoS genetics.

[67]  Franziska Mika,et al.  Small Regulatory RNAs in the Control of Motility and Biofilm Formation in E. coli and Salmonella , 2013, International journal of molecular sciences.

[68]  P. Bessières,et al.  Bacillus subtilis RNase Y Activity In Vivo Analysed by Tiling Microarrays , 2013, PloS one.

[69]  S. Gottesman,et al.  A complex network of small non‐coding RNAs regulate motility in Escherichia coli , 2012, Molecular microbiology.

[70]  J. Vogel,et al.  Global Regulatory Functions of the Staphylococcus aureus Endoribonuclease III in Gene Expression , 2012, PLoS genetics.

[71]  Jay C D Hinton,et al.  Superfolder GFP reporters validate diverse new mRNA targets of the classic porin regulator, MicF RNA , 2012, Molecular microbiology.

[72]  G. Storz,et al.  A small RNA that regulates motility and biofilm formation in response to changes in nutrient availability in Escherichia coli , 2012, Molecular microbiology.

[73]  D. Hendrixson,et al.  Identification and analysis of flagellar coexpressed determinants (Feds) of Campylobacter jejuni involved in colonization , 2012, Molecular microbiology.

[74]  C. Condon,et al.  Three Essential Ribonucleases—RNase Y, J1, and III—Control the Abundance of a Majority of Bacillus subtilis mRNAs , 2012, PLoS genetics.

[75]  V. Novik,et al.  Quantitative Proteomics of Intracellular Campylobacter jejuni Reveals Metabolic Reprogramming , 2012, PLoS pathogens.

[76]  D. Maskell,et al.  Quantitative RNA-seq analysis of the Campylobacter jejuni transcriptome , 2011, Microbiology.

[77]  K. Ottemann,et al.  Motility and chemotaxis in Campylobacter and Helicobacter . , 2011, Annual review of microbiology.

[78]  J. Stülke,et al.  RNA processing in Bacillus subtilis: identification of targets of the essential RNase Y , 2011, Molecular microbiology.

[79]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[80]  William L. Cody,et al.  Change Is Good: Variations in Common Biological Mechanisms in the Epsilonproteobacterial Genera Campylobacter and Helicobacter , 2011, Microbiology and Molecular Reviews.

[81]  Kristin Reiche,et al.  The primary transcriptome of the major human pathogen Helicobacter pylori , 2010, Nature.

[82]  M. Wösten,et al.  Temperature‐dependent FlgM/FliA complex formation regulates Campylobacter jejuni flagella length , 2010, Molecular microbiology.

[83]  D. Hendrixson,et al.  Functional Analysis of the RdxA and RdxB Nitroreductases of Campylobacter jejuni Reveals that Mutations in rdxA Confer Metronidazole Resistance , 2010, Journal of bacteriology.

[84]  E. Andreishcheva,et al.  Functional Characterization of Flagellin Glycosylation in Campylobacter jejuni 81-176 , 2009, Journal of Bacteriology.

[85]  Peter F. Stadler,et al.  Fast Mapping of Short Sequences with Mismatches, Insertions and Deletions Using Index Structures , 2009, PLoS Comput. Biol..

[86]  D. Hendrixson,et al.  FlhF and Its GTPase Activity Are Required for Distinct Processes in Flagellar Gene Regulation and Biosynthesis in Campylobacter jejuni , 2009, Journal of bacteriology.

[87]  D. Hendrixson,et al.  Activation of the Campylobacter jejuni FlgSR Two-Component System Is Linked to the Flagellar Export Apparatus , 2009, Journal of bacteriology.

[88]  I. Barnes,et al.  Role of the Campylobacter jejuni Cj1461 DNA Methyltransferase in Regulating Virulence Characteristics , 2008, Journal of bacteriology.

[89]  R. Janssen,et al.  Host-Pathogen Interactions in Campylobacter Infections: the Host Perspective , 2008, Clinical Microbiology Reviews.

[90]  K. Hughes,et al.  Coordinating assembly of a bacterial macromolecular machine , 2008, Nature Reviews Microbiology.

[91]  Ronny Lorenz,et al.  The Vienna RNA Websuite , 2008, Nucleic Acids Res..

[92]  D. Hendrixson,et al.  Analysis of the Campylobacter jejuni FlgR Response Regulator Suggests Integration of Diverse Mechanisms To Activate an NtrC-Like Protein , 2008, Journal of bacteriology.

[93]  R. Breaker,et al.  In-line probing analysis of riboswitches. , 2008, Methods in molecular biology.

[94]  P. Guerry Campylobacter flagella: not just for motility. , 2007, Trends in microbiology.

[95]  C. Constantinidou,et al.  Deletion of a previously uncharacterized flagellar-hook-length control gene fliK modulates the sigma54-dependent regulon in Campylobacter jejuni. , 2007, Microbiology.

[96]  S. Yao,et al.  Processing of Bacillus subtilis small cytoplasmic RNA: evidence for an additional endonuclease cleavage site , 2007, Nucleic acids research.

[97]  J. Vogel,et al.  σE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay , 2006, Molecular microbiology.

[98]  S. Gottesman,et al.  Remodelling of the Escherichia coli outer membrane by two small regulatory RNAs , 2006, Molecular microbiology.

[99]  L. McCarter,et al.  Motility and Chemotaxis , 2006 .

[100]  T. Terwilliger,et al.  Engineering and characterization of a superfolder green fluorescent protein , 2006, Nature Biotechnology.

[101]  Jeffrey R. Barker,et al.  The Vibrio cholerae FlgM Homologue Is an Anti-σ28 Factor That Is Secreted through the Sheathed Polar Flagellum , 2004, Journal of bacteriology.

[102]  M. Wösten,et al.  The FlgS/FlgR Two-component Signal Transduction System Regulates the fla Regulon in Campylobacter jejuni* , 2004, Journal of Biological Chemistry.

[103]  A. Labigne,et al.  Presence of Active Aliphatic Amidases in Helicobacter Species Able To Colonize the Stomach , 2003, Infection and Immunity.

[104]  A. Stintzi Gene Expression Profile of Campylobacter jejuni in Response to Growth Temperature Variation , 2003, Journal of bacteriology.

[105]  K. Hughes,et al.  Functional characterization of the antagonistic flagellar late regulators FliA and FlgM of Helicobacter pylori and their effects on the H. pylori transcriptome , 2002, Molecular microbiology.

[106]  P. Babitzke,et al.  Positive regulation of motility and flhDC expression by the RNA‐binding protein CsrA of Escherichia coli , 2001, Molecular microbiology.

[107]  B. Barrell,et al.  The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences , 2000, Nature.

[108]  H. D. Reuse,et al.  The Helicobacter pylori UreI protein is not involved in urease activity but is essential for bacterial survival in vivo. , 1998, Infection and immunity.

[109]  K. Kutsukake,et al.  Role of the FliA-FlgM regulatory system on the transcriptional control of the flagellar regulon and flagellar formation in Salmonella typhimurium , 1994, Journal of bacteriology.

[110]  K. Hughes,et al.  Negative regulatory loci coupling flagellin synthesis to flagellar assembly in Salmonella typhimurium , 1991, Journal of bacteriology.

[111]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[112]  D. Taylor,et al.  Chloramphenicol resistance in Campylobacter coli: nucleotide sequence, expression, and cloning vector construction. , 1990, Gene.

[113]  M. Faubladier,et al.  Escherichia coli cell division inhibitor DicF-RNA of the dicB operon. Evidence for its generation in vivo by transcription termination and by RNase III and RNase E-dependent processing. , 1990, Journal of molecular biology.

[114]  F. Corpet Multiple sequence alignment with hierarchical clustering. , 1988, Nucleic acids research.

[115]  E. Mcsweegan,et al.  Identification and characterization of two Campylobacter jejuni adhesins for cellular and mucous substrates , 1986, Infection and immunity.