On the efficiency of multiple range query processing in multidimensional data structures

Multidimensional data are commonly utilized in many application areas like electronic shopping, cartography and many others. These data structures support various types of queries, e.g. point or range query. The range query retrieves all tuples of a multidimensional space matched by a query rectangle. Processing range queries in a multidimensional data structure has some performance issues, especially in the case of a higher space dimension or a lower query selectivity. As result, these data are often stored in an array or one-dimensional index like B-tree and range queries are processed with a sequence scan. Many real world queries can be transformed to a multiple range query: the query including more than one query rectangle. In this article, we aim our effort to processing of this type of the range query. First, we show an algorithm processing a sequence of range queries. Second, we introduce a special type of the multiple range query, the Cartesian range query. We show optimality of these algorithms from the IO and CPU costs point of view and we compare their performance with current methods. Although we introduce these algorithms for the R-tree, we show that these algorithms are appropriate for all multidimensional data structures with nested regions.

[1]  Hanan Samet,et al.  Foundations of multidimensional and metric data structures , 2006, Morgan Kaufmann series in data management systems.

[2]  Hans-Peter Kriegel,et al.  The X-tree : An Index Structure for High-Dimensional Data , 2001, VLDB.

[3]  Jennifer Widom,et al.  Database Systems: The Complete Book , 2001 .

[4]  Jaroslav Pokorný,et al.  Construction of Tree-Based Indexes for Level-Contiguous Buffering Support , 2007, DASFAA.

[5]  Christian S. Jensen,et al.  Multiple k Nearest Neighbor Query Processing in Spatial Network Databases , 2006, ADBIS.

[6]  Timos K. Sellis,et al.  Multiple-query optimization , 1988, TODS.

[7]  Cui Yu,et al.  High-Dimensional Indexing , 2002, Lecture Notes in Computer Science.

[8]  Walid G. Aref,et al.  SEA-CNN: scalable processing of continuous k-nearest neighbor queries in spatio-temporal databases , 2005, 21st International Conference on Data Engineering (ICDE'05).

[9]  Pavel Zezula,et al.  Range Queries in the R-Tree , 2004 .

[10]  Guang-Ho Cha,et al.  Index Clustering for High-Performance Sequential Index Access , 2004, DASFAA.

[11]  Vagelis Hristidis,et al.  Storing semi-structured data on disk drives , 2009, TOS.

[12]  Kyriakos Mouratidis,et al.  Conceptual partitioning: an efficient method for continuous nearest neighbor monitoring , 2005, SIGMOD '05.

[13]  Sam R. Alapati Expert Oracle Database 11g Administration , 2008 .

[14]  Shin'ichi Satoh,et al.  The SR-tree: an index structure for high-dimensional nearest neighbor queries , 1997, SIGMOD '97.

[15]  V. Markl,et al.  IMPROVING MULTIDIMENSIONAL RANGE QUERIES OF NON RECTANGULAR VOLUMES SPECIFIED BY A QUERY BOX SET , 1999 .

[16]  Pavel Zezula,et al.  M-tree: An Efficient Access Method for Similarity Search in Metric Spaces , 1997, VLDB.

[17]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[18]  Tapio Lahdenmäki,et al.  Relational Database Index Design and the Optimizers , 2005 .

[19]  Sam Lightstone,et al.  Physical Database Design: the database professional's guide to exploiting indexes, views, storage, and more , 2007 .

[20]  Christos Faloutsos,et al.  The R+-Tree: A Dynamic Index for Multi-Dimensional Objects , 1987, VLDB.

[21]  Rudolf Bayer,et al.  The Universal B-Tree for Multidimensional Indexing: general Concepts , 1997, WWCA.

[22]  Peter Chovanec,et al.  Optimization of Disk Accesses for Multidimensional Range Queries , 2010, DEXA.

[23]  Yannis Manolopoulos,et al.  Multiple Range Query Optimization in Spatial Databases , 1998, ADBIS.

[24]  Pavel Zezula,et al.  Efficient Processing of Narrow Range Queries in Multi-dimensional Data Structures , 2006, 2006 10th International Database Engineering and Applications Symposium (IDEAS'06).

[25]  Marios Hadjieleftheriou,et al.  R-Trees - A Dynamic Index Structure for Spatial Searching , 2008, ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems.

[26]  Michael Freeston A general solution of the n-dimensional B-tree problem , 1995, SIGMOD '95.

[27]  Volker Markl,et al.  Mistral - Processing Relational Queries using a Multidimensional Access Technique , 1999, Datenbank Rundbr..

[28]  Divyakant Agrawal,et al.  Accessing Scientifgic Data: Simpler is Better , 2003, SSTD.

[29]  Patrick E. O'Neil TheSB-tree an index-sequential structure for high-performance sequential access , 2005, Acta Informatica.

[30]  Jack Minker,et al.  Multiple Query Processing in Deductive Databases using Query Graphs , 1986, VLDB.

[31]  Ted Krueger,et al.  Expert Performance Indexing for SQL Server 2012 , 2012, Apress.

[32]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.