Integrating prior shape models into level-set approaches

To incorporate prior shape information into a deformable model either local or global shape modeling must be carried out. Local shape modeling involves manual interaction to accumulate information on the shape variability of any object. It depends on the existence of homologous points, or landmarks, that must be unambiguously and consistently located in different specimens. Global shape modeling does not require the existence of landmarks. Global properties can be characterized using only a few parameters, and tend to be much more stable than local properties.In this work we propose a new approach that combines the benefits of local and global shape modeling in the field of level-set approaches. The method starts with local shape parameterization, which eases user interaction. Then, the shape is converted into an implicit representation which exploits the stability and compactness of global shape parameters.

[1]  Yehoshua Y. Zeevi,et al.  Geodesic Active Contours Applied to Texture Feature Space , 2001, Scale-Space.

[2]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[3]  Alan L. Yuille,et al.  Feature extraction from faces using deformable templates , 2004, International Journal of Computer Vision.

[4]  Timothy F. Cootes,et al.  An information theoretic approach to shape modelling , 2001 .

[5]  TerzopoulosDemetri,et al.  Dynamic 3D Models with Local and Global Deformations , 1991 .

[6]  Ruzena Bajcsy,et al.  Recovery of Parametric Models from Range Images: The Case for Superquadrics with Global Deformations , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  R. Sibson A vector identity for the Dirichlet tessellation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  James S. Duncan,et al.  Deformable Fourier models for surface finding in 3-D images , 1992, Other Conferences.

[9]  O. Faugeras,et al.  Statistical shape influence in geodesic active contours , 2002, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[10]  Demetri Terzopoulos,et al.  A finite element model for 3D shape reconstruction and nonrigid motion tracking , 1993, 1993 (4th) International Conference on Computer Vision.

[11]  James S. Duncan,et al.  Boundary Finding with Parametrically Deformable Models , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Timothy F. Cootes,et al.  An Information Theoretic Approach to Statistical Shape Modelling , 2001, BMVC.

[13]  Kostas Delibasis,et al.  Anatomical object recognition using deformable geometric models , 1994, Image Vis. Comput..

[14]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Lawrence H. Staib,et al.  Boundary Finding with Prior Shape and Smoothness Models , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[17]  Anthony J. Yezzi,et al.  A geometric snake model for segmentation of medical imagery , 1997, IEEE Transactions on Medical Imaging.

[18]  V. Caselles,et al.  A geometric model for active contours in image processing , 1993 .

[19]  Anil K. Jain,et al.  Deformable template models: A review , 1998, Signal Process..

[20]  R. Zurmühl,et al.  Zur angenäherten ganzrationalen Tschebyscheff-Approximation mit Hilfe trigonometrischer Interpolation , 1964 .

[21]  Ramesh C. Jain,et al.  Using Dynamic Programming for Solving Variational Problems in Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Geir Storvik,et al.  A Bayesian Approach to Dynamic Contours Through Stochastic Sampling and Simulated Annealing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  James S. Duncan,et al.  Deformable boundary finding in medical images by integrating gradient and region information , 1996, IEEE Trans. Medical Imaging.

[24]  James S. Duncan,et al.  An Integrated Approach for Locating Neuroanatomical Structure from MRI , 1997, Int. J. Pattern Recognit. Artif. Intell..

[25]  Dimitris N. Metaxas,et al.  Dynamic 3D models with local and global deformations: deformable superquadrics , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[26]  Alok Gupta,et al.  Dynamic Programming for Detecting, Tracking, and Matching Deformable Contours , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Jean-Daniel Boissonnat,et al.  Smooth surface reconstruction via natural neighbour interpolation of distance functions , 2002, Comput. Geom..

[28]  Laurent D. Cohen,et al.  Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..