Development of Well Placement Optimization Model using Artificial Neural Network and Simulated Annealing

This study presents the development of a well placement optimization model, combining an artificial neural network, which enables high-speed calculation, with a simulated annealing algorithm. The conventional FDM simulator takes excessive time when used to perform a field scale reservoir simulation. In order to solve this problem, an artificial neural network was applied to the model to allow the simulation to be executed within a short time. Also by using the given result, the optimization method, SA algorithm, was implemented to automatically select the optimal location without taking any subjective experiences into consideration. By comparing the result of the developed model with the eclipse simulator, it was found that the prediction performance of the developed model has become favorable, and the speed of calculation performance has also been improved. Especially, the optimum value was estimated by performing a sensitivity analysis for the cooling rate and the initial temperature, which is the control parameter of SA algorithm. From this result, it was verified that the calculation performance has been improved, as well. Lastly, an optimization for the well placement was performed using the model, and it concluded the optimized place for the well by selecting regions with great productivity.