Shape determination for deformed electromagnetic cavities
暂无分享,去创建一个
Lie-Quan Lee | Zenghai Li | Cho-Kuen Ng | Liling Xiao | Kwok Ko | Volkan Akcelik | Lie-Quan Lee | K. Ko | Zenghai Li | C. Ng | V. Akçelik | L. Xiao
[1] Din-Kow Sun,et al. Construction of Nearly Orthogonal Nedelec Bases for Rapid Convergence with Multilevel Preconditioned Solvers , 2001, SIAM J. Sci. Comput..
[2] J. Ming,et al. Finite element method in electromagnetics , 2002 .
[3] E. Salinas,et al. Continuum gradient-based shape optimization of conducting shields for power frequency magnetic field mitigation , 2006, IEEE Transactions on Magnetics.
[4] Philip E. Gill,et al. Practical optimization , 1981 .
[5] G. Golub,et al. Inverse Eigenvalue Problems: Theory, Algorithms, and Applications , 2005 .
[6] David E. Keyes,et al. Parallel Algorithms for PDE-Constrained Optimization , 2006, Parallel Processing for Scientific Computing.
[7] Jian-Ming Jin,et al. The Finite Element Method in Electromagnetics , 1993 .
[8] Albert Tarantola,et al. Inverse problem theory - and methods for model parameter estimation , 2004 .
[9] David Ericsson,et al. Shape and material optimization using gradient methods and the adjoint problem in time and frequency domain , 2005 .
[10] Max Gunzburger,et al. Perspectives in flow control and optimization , 1987 .
[11] Ronald H. W. Hoppe,et al. Finite element methods for Maxwell's equations , 2005, Math. Comput..
[12] Carretera de Valencia,et al. The finite element method in electromagnetics , 2000 .
[13] P. Hansen. Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .
[14] E. Ng,et al. Adjoint methods for electromagnetic shape optimization of the low-loss cavity for the International Linear Collider , 2005 .
[15] Yingying Yao,et al. Optimal shape design of 3-D nonlinear electromagnetic devices using parameterized design sensitivity analysis , 2005, IEEE Transactions on Magnetics.
[16] Patrick R. Amestoy,et al. Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .
[17] J. P. Webb. Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements , 1999 .
[18] J. Burkardt,et al. Insensitive Functionals, Inconsistent Gradients, Spurious Minima, and Regularized Functionals in Flow Optimization Problems , 2002 .
[19] V. Akcelik,et al. Modeling imperfection effects on dipole modes in TESLA cavity , 2007, 2007 IEEE Particle Accelerator Conference (PAC).
[20] Patrick Amestoy,et al. A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..
[21] K. M. Gawrylczyk,et al. Time domain sensitivity analysis of electromagnetic quantities utilising FEM for the identification of material conductivity distributions , 2006 .
[22] J. Haslinger,et al. Finite Element Approximation for Optimal Shape, Material and Topology Design , 1996 .
[23] Michael Wolf,et al. Solving large sparse linear systems in end-to-end accelerator structure simulations , 2004, 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings..
[24] Defeng Sun,et al. Strong Semismoothness of Eigenvalues of Symmetric Matrices and Its Application to Inverse Eigenvalue Problems , 2002, SIAM J. Numer. Anal..
[25] Per Christian Hansen,et al. Rank-Deficient and Discrete Ill-Posed Problems , 1996 .