A CNDO/INDO crystal orbital model for transition metal polymers of the 3d series—basis equations

The crystal orbital formalism in the tight-binding approximation is combined with a recently developed CNDO/INDO model for transition metal species of the 3d series in order to allow band structure calculations on the Hartree-Fock (HF) SCF level for one-dimensional (1D) chains with organometallic unit cells. The band structure approach based on the CNDO and INDO approximation can be used for any atom combination up to bromine under the inclusion of the 3d series. The matrix elements for the tight-binding Hamiltonian are derived for an improved CNDO and INDO framework. The total energy of the 1D chain is partitioned into one-center contributions and into two-center increments of the intracell and intercell type. Semiempirical band structure calculations on simple model systems are compared with available ab initio data of high quality.

[1]  R. Gleiter,et al.  A Green's function approach to the photoelectron spectrum of bis(π-allyl)nickel[1] , 1980 .

[2]  A. A. Ovchinnikov,et al.  Antiferromagnetic spin structure of long molecules with conjugated bonds , 1974 .

[3]  J. Ladik,et al.  Electronic Structure of Polymers and Molecular Crystals , 1975 .

[4]  A. Karpfen,et al.  Ab initio Studies on polymers , 1979 .

[5]  R. P. Messmer,et al.  The electronic structure of the Pt (CN)2−4 ion , 1974 .

[6]  David R. Wilson,et al.  Electronic structure of organometallic compounds. 18. Electronic structure of bis(pentadienyl)iron. Semiempirical calculations and photoelectron spectra , 1982 .

[7]  C. Batich,et al.  The Photoelectron Spectra of Ni, Pd, Pt-Diallyl† , 1980 .

[8]  R. Hoffmann,et al.  Band structures of face-sharing octahedral MX3n- chains , 1980 .

[9]  D. Bullett Theoretical orbital energy spectra of electrons in chemisorbed systems: Chalcogens on Ni(001) , 1977 .

[10]  P. Geerlings,et al.  Rotational invariance of INDO theories including d‐orbitals into the basis set , 1977 .

[11]  Michael C. Böhm,et al.  A CNDO/INDO molecular orbital formalism for the elements H to Br. theory , 1981 .

[12]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[13]  A. Karpfen Ab initio studies on polymers. IV. Polydiacetylenes , 1980 .

[14]  A. Karpfen Ab initio studies on polymers. I. The linear infinite polyyne , 1979 .

[15]  C. Jørgensen,et al.  The angular overlap model, an attempt to revive the ligand field approaches , 1965 .

[16]  M. Dewar,et al.  Ground states of .sigma.-bonded molecules. XIV. Application of energy partitioning to the MINDO [modified intermediate neglect of differential overlap] /2 method and a study of the Cope rearrangement , 1971 .

[17]  O. Kahn,et al.  Orbital interaction in one-dimensional magnetic compounds , 1977 .

[18]  H. Kollmar,et al.  Energy partitioning with the CNDO method , 1970 .

[19]  T. Marks,et al.  Chemical, Spectral, Structural, and Charge Transport Properties of the 'Molecular Metals' Produced by Iodination of Nickel Phthalocyanine. , 1980 .

[20]  Michael C. Zerner,et al.  An intermediate neglect of differential overlap theory for transition metal complexes: Fe, Co and Cu chlorides , 1979 .

[21]  Klaus Ruedenberg,et al.  The Physical Nature of the Chemical Bond , 1962 .

[22]  D. Santry,et al.  Molecular‐Orbital Theory for Infinite Systems: Regular Polymer Chains , 1971 .

[23]  B. Brandow Formal theory of effective π‐electron hamiltonians , 1979 .

[24]  R. Hoffmann,et al.  The band structure of the tetracyanoplatinate chain , 1978 .

[25]  John C. Slater,et al.  Quantum Theory of Molecules and Solids , 1951 .

[26]  David L. Beveridge,et al.  Approximate molecular orbital theory , 1970 .

[27]  A. Karpfen Ab initio studies on hydrogen bonded chains. I. Equilibrium geometry of the infinite, linear chain of hydrogen fluoride molecules , 1980 .

[28]  T. Marks,et al.  A new class of highly conductive molecular solids: the partially oxidized phthalocyanines , 1977 .

[29]  R. Gleiter,et al.  Electronic structure of organometallic compounds , 1982 .

[30]  Clemens C. J. Roothaan,et al.  New Developments in Molecular Orbital Theory , 1951 .

[31]  P. Perkins,et al.  Semi-empirical LCAOMO theory for infinite systems. Part 1.—Application to polyethylene, polyacetylene and polyvinylchloride , 1972 .

[32]  Michael J. S. Dewar,et al.  The SPO (Split p‐Orbital) Method and Its Application to Ethylene , 1961 .

[33]  M. E. Rose Elementary Theory of Angular Momentum , 1957 .

[34]  J. Stewart,et al.  An improved LCAO SCF method for three-dimensional solids and its application to polyethylene, graphite, diamond, and boron nitride , 1980 .

[35]  R. Gleiter,et al.  A CNDO/INDO molecular orbital formalism for the elements H to Br. applications , 1981 .

[36]  F. Bloch Über die Quantenmechanik der Elektronen in Kristallgittern , 1929 .

[37]  K. Krogmann Planare Komplexe mit Metall‐Metall‐Bindungen , 1969 .

[38]  J. Delhalle,et al.  Quantum Theory of Polymers , 1978 .

[39]  M. Whangbo Mott–Hubbard condition for electron localization in the Hartree–Fock band theory , 1979 .

[40]  H. Yamazaki,et al.  Reaction of a diphenylacetylene complex of cobalt with isocyanide. Novel metalloring formation , 1975 .

[41]  G. Shortley,et al.  The Theory of Atomic Spectra , 1935 .

[42]  P. Perkins,et al.  Electronic band structures and electronic properties of some substituted linear polyenes , 1981 .

[43]  A. Imamura,et al.  Electronic structures of polymers using the tight‐binding approximation. III. Density matrix approach to poly‐L‐alanine and polyglycine‐water complex by the CNDO/2 method , 1974 .

[44]  A. Imamura,et al.  Electronic Structures of Polymers Using the Tight‐Binding Approximation. II. Polyethylene and Polyglycine by the CNDO Method , 1970 .

[45]  D. Cowan,et al.  Organic solid state. VII. Semiconducting polymers. Mixed valence ferrocene-ferricenium polymers , 1972 .

[46]  G. Del Re,et al.  Self-Consistent-Field Tight-Binding Treatment of Polymers. I. Infinite Three-Dimensional Case , 1967 .

[47]  L. D. Brown,et al.  Rational synthesis of unidimensional mixed valence solids. Structure-oxidation state-charge transport relationships in iodinated nickel and palladium bis(benzoquinone dioximates) , 1979 .

[48]  J. M. Sichel,et al.  Semi-empirical all valence electrons SCF-MO-CNDO theory , 1968 .

[49]  A. Yoffe Electronic properties of some chain and layer compounds , 1976 .

[50]  Jean-Marie André,et al.  Recent advances in the quantum theory of polymers : proceedings of the workshop held in Namur (Belgium), February 11-14, 1979 , 1980 .

[51]  R. Silbey,et al.  A nonempirical effective Hamiltonian technique for polymers: Application to polyacetylene and polydiacetylene , 1981 .

[52]  K. Morokuma Electronic Structures of Linear Polymers. II. Formulation and CNDO/2 Calculation for Polyethylene and Poly(tetrafluoroethylene) , 1971 .

[53]  D. Armstrong Ab initio calculation of the band structure of some boron polymers , 1981 .

[54]  G. Burns ATOMIC SHIELDING PARAMETERS , 1964 .

[55]  D. R. Hartree,et al.  The calculation of atomic structures , 1959 .

[56]  Ronald D. Brown,et al.  Approximate molecular orbital theory for inorganic molecules , 1970 .

[57]  F. F. Seelig Synthesis and Properties of a New Kind of One-Dimensional Conductors. 2. Extended Hückel Calculations on the Energy Band Structure , 1979 .

[58]  H. Keller Chemistry and physics of one-dimensional metals , 1977 .

[59]  M. Böhm Electron Correlation in Weakly Coupled Transition Metal Compounds: Poly‐Decker Systems , 1981 .

[60]  J. Stewart,et al.  The band structures and magnetic properties of some transition-metal monophosphides I. Scandium phosphide , 1981 .

[61]  T. Marks,et al.  Conductive Polymers Consisting of Partially Oxidized, Face-to-Face Linked Metallomacrocycles , 1979 .