Microscopic origins of surface states on nitride surfaces

We report a systematic and comprehensive computational study of the electronic structure of GaN and InN surfaces in various orientations, including the polar c plane, as well as the nonpolar a and m planes. Surface band structures and density-of-states plots show the energetic position of surface states, and by correlating the electronic structure with atomistic information we are able to identify the microscopic origins of each of these states. Fermi-level pinning positions are identified, depending on surface stoichiometry and surface polarity. For polar InN we find that all the surface states are located above the conduction-band minimum, and explain the source of the intrinsic electron accumulation that has been universally observed on InN surfaces.

[1]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[2]  Chih-I Wu,et al.  GaN (0001)-(1×1) surfaces: Composition and electronic properties , 1998 .

[3]  H. Morkoç,et al.  Surface band bending in as-grown and plasma-treated n-type GaN films using surface potential electric force microscopy , 2004 .

[4]  Pashley,et al.  Compensating surface defects induced by Si doping of GaAs. , 1991, Physical review letters.

[5]  Victor M. Bermudez,et al.  Band Bending and Photoemission-Induced Surface Photovoltages on Clean n- and p-GaN (0001) Surfaces , 2002 .

[6]  M. Oshima,et al.  Angle-resolved photoemission from stoichiometric GaN(0001)-1 × 1 , 2005 .

[7]  Umesh K. Mishra,et al.  Surface Potential at as‐Grown GaN(0001) MBE Layers , 2002 .

[8]  M. Reiche,et al.  Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes , 2000, Nature.

[9]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[10]  T. Moustakas,et al.  Surface Electronic Structure of p-type GaN(0001) , 2000 .

[11]  James S. Speck,et al.  Control of GaN surface morphologies using plasma-assisted molecular beam epitaxy , 2000 .

[12]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[13]  James S. Speck,et al.  Gallium adsorption onto (112̄0) gallium nitride surfaces , 2004 .

[14]  T. Moustakas,et al.  Unoccupied Band Structure of Wurtzite GaN(0001) , 1999 .

[15]  C. Stampfl,et al.  Native defects and impurities in InN: First-principles studies using the local-density approximation and self-interaction and relaxation-corrected pseudopotentials , 2000 .

[16]  J. Kanski,et al.  Electronic structure of GaN(000-1)-(1 x 1) surface , 2004 .

[17]  D. Greve,et al.  Reconstructions of the GaN\(0001̄\) Surface , 1997 .

[18]  P. Krüger,et al.  Electronic structure of 1 × 1 GaN(0001) and GaN ( 0001 ¯ ) surfaces , 2001 .

[19]  R. Davis,et al.  Observation of highly dispersive surface states on GaN(0001)1×1 , 1999 .

[20]  E. Haller,et al.  Fermi-level stabilization energy in group III nitrides , 2005 .

[21]  James S. Speck,et al.  Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors , 2000 .

[22]  A. Janotti,et al.  Self-consistent band-gap corrections in density functional theory using modified pseudopotentials , 2007 .

[23]  C. Walle,et al.  First-principles surface phase diagram for hydrogen on GaN surfaces. , 2002, Physical review letters.

[24]  Vincenzo Fiorentini,et al.  MACROSCOPIC POLARIZATION AND BAND OFFSETS AT NITRIDE HETEROJUNCTIONS , 1998 .

[25]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[26]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[27]  Jörg Neugebauer,et al.  Structure of GaN(0001): The laterally contracted Ga bilayer model , 2000 .

[28]  A. Janotti,et al.  Oxygen vacancies in ZnO , 2005 .

[29]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[30]  P. Feibelman Surface theory moves into the real world , 2003 .

[31]  Chris G. Van de Walle,et al.  Surface reconstructions on InN and GaN polar and nonpolar surfaces , 2007 .

[32]  Lester F. Eastman,et al.  Surface charge accumulation of InN films grown by molecular-beam epitaxy , 2003 .

[33]  P. Krüger,et al.  Surface electronic structure of GaN()-(1×1): comparison between theory and experiment , 2002 .

[34]  W. Schattke,et al.  Electronic band structure of gallium nitride: a comparative angle-resolved photoemission study of single crystals and thin films , 2002 .

[35]  Lee,et al.  Self-consistent calculations of the energy bands and bonding properties of B12C3. , 1990, Physical review. B, Condensed matter.

[36]  Oliver Brandt,et al.  Ga adsorption and desorption kinetics on M-plane GaN , 2004 .

[37]  N. Christensen Electronic structure of GaAs under strain , 1984 .

[38]  T. Moustakas,et al.  Surface and bulk electronic structure of thin-film wurtzite GaN , 1997 .

[39]  Anderson Janotti,et al.  Effects of cation d states on the structural and electronic properties of III-nitride and II-oxide wide-band-gap semiconductors , 2006 .

[40]  W. Schaff,et al.  Intrinsic electron accumulation at clean InN surfaces. , 2004, Physical review letters.