Higher-Order Methods for Compressible Turbulent Flows Using Entropy Variables
暂无分享,去创建一个
[1] P. Koumoutsakos,et al. A comparison of vortex and pseudo-spectral methods at high Reynolds numbers , 2010 .
[2] Pramod K. Subbareddy,et al. A fully discrete, kinetic energy consistent finite-volume scheme for compressible flows , 2009, J. Comput. Phys..
[3] Timothy J. Barth,et al. Numerical Methods for Gasdynamic Systems on Unstructured Meshes , 1997, Theory and Numerics for Conservation Laws.
[4] K M Case,et al. NUMERICAL SIMULATION OF TURBULENCE , 1973 .
[5] E. Tadmor. Skew-selfadjoint form for systems of conservation laws , 1984 .
[6] Tayfun E. Tezduyar,et al. SUPG finite element computation of compressible flows with the entropy and conservation variables formulations , 1993 .
[7] Laslo T. Diosady,et al. Design of a Variational Multiscale Method for Turbulent Compressible Flows , 2013 .
[8] Rémi Abgrall,et al. High‐order CFD methods: current status and perspective , 2013 .
[9] Sergio Pirozzoli,et al. Numerical Methods for High-Speed Flows , 2011 .
[10] Petros Koumoutsakos,et al. A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers , 2011, J. Comput. Phys..
[11] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .
[12] Charles L. Merkle,et al. Computation of low-speed compressible flows with time-marching procedures , 1988 .
[13] G. S. Patterson,et al. Numerical simulation of turbulence , 1972 .
[14] A. Beck,et al. On the accuracy of high-order discretizations for underresolved turbulence simulations , 2013 .
[15] S. Venkateswaran,et al. Analysis of preconditioning methods for the euler and navier-stokes equations , 1999 .
[16] George Em Karniadakis,et al. De-aliasing on non-uniform grids: algorithms and applications , 2003 .
[17] P. Moin,et al. Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow , 1998 .
[18] Björn Sjögreen,et al. On Skew-Symmetric Splitting and Entropy Conservation Schemes for the Euler Equations , 2010 .
[19] Parviz Moin,et al. Higher entropy conservation and numerical stability of compressible turbulence simulations , 2004 .
[20] S. Rebay,et al. GMRES Discontinuous Galerkin Solution of the Compressible Navier-Stokes Equations , 2000 .
[21] Laslo T. Diosady,et al. DNS of Flows over Periodic Hills using a Discontinuous-Galerkin Spectral-Element Method , 2014 .
[22] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier—Stokes equations and the second law of thermodynamics , 1986 .
[23] Travis C. Fisher,et al. High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains , 2013, J. Comput. Phys..
[24] Philip L. Roe,et al. Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks , 2009, J. Comput. Phys..
[25] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .