Higher-Order Methods for Compressible Turbulent Flows Using Entropy Variables

A higher-order space-time discontinuous Galerkin method is presented for the simulation of compressible ows. The eect of the discrete formulation on the nonlinear stability of the scheme is assessed through numerical simulations. For marginally resolved turbulent simulations at moderate Reynolds number, polynomial dealiasing is shown to be necessary in order to maintain stability at high order. With increasing Reynolds number, the formulation using conservative variables is shown to be unstable at high order even when using polynomial dealiasing. Using an entropy variable formulation consistent with established entropy stability theory ensures nonlinear stability at high and innite Reynolds number. The eect of the numerical ux for underresolved turbulent simulations is investigated. A low-Mach modied ux term is presented to suppress the biased pressure-dilatation term seen with other upwind numerical uxes. Subgrid-scale modeling eects of dierent numerical ux functions on the kinetic energy spectrum are examined in the limit of innite Reynolds number.

[1]  P. Koumoutsakos,et al.  A comparison of vortex and pseudo-spectral methods at high Reynolds numbers , 2010 .

[2]  Pramod K. Subbareddy,et al.  A fully discrete, kinetic energy consistent finite-volume scheme for compressible flows , 2009, J. Comput. Phys..

[3]  Timothy J. Barth,et al.  Numerical Methods for Gasdynamic Systems on Unstructured Meshes , 1997, Theory and Numerics for Conservation Laws.

[4]  K M Case,et al.  NUMERICAL SIMULATION OF TURBULENCE , 1973 .

[5]  E. Tadmor Skew-selfadjoint form for systems of conservation laws , 1984 .

[6]  Tayfun E. Tezduyar,et al.  SUPG finite element computation of compressible flows with the entropy and conservation variables formulations , 1993 .

[7]  Laslo T. Diosady,et al.  Design of a Variational Multiscale Method for Turbulent Compressible Flows , 2013 .

[8]  Rémi Abgrall,et al.  High‐order CFD methods: current status and perspective , 2013 .

[9]  Sergio Pirozzoli,et al.  Numerical Methods for High-Speed Flows , 2011 .

[10]  Petros Koumoutsakos,et al.  A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers , 2011, J. Comput. Phys..

[11]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[12]  Charles L. Merkle,et al.  Computation of low-speed compressible flows with time-marching procedures , 1988 .

[13]  G. S. Patterson,et al.  Numerical simulation of turbulence , 1972 .

[14]  A. Beck,et al.  On the accuracy of high-order discretizations for underresolved turbulence simulations , 2013 .

[15]  S. Venkateswaran,et al.  Analysis of preconditioning methods for the euler and navier-stokes equations , 1999 .

[16]  George Em Karniadakis,et al.  De-aliasing on non-uniform grids: algorithms and applications , 2003 .

[17]  P. Moin,et al.  Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow , 1998 .

[18]  Björn Sjögreen,et al.  On Skew-Symmetric Splitting and Entropy Conservation Schemes for the Euler Equations , 2010 .

[19]  Parviz Moin,et al.  Higher entropy conservation and numerical stability of compressible turbulence simulations , 2004 .

[20]  S. Rebay,et al.  GMRES Discontinuous Galerkin Solution of the Compressible Navier-Stokes Equations , 2000 .

[21]  Laslo T. Diosady,et al.  DNS of Flows over Periodic Hills using a Discontinuous-Galerkin Spectral-Element Method , 2014 .

[22]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier—Stokes equations and the second law of thermodynamics , 1986 .

[23]  Travis C. Fisher,et al.  High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains , 2013, J. Comput. Phys..

[24]  Philip L. Roe,et al.  Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks , 2009, J. Comput. Phys..

[25]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .