Parallel DNA Arithmetic Operation With One Error Detection Based on 3-Moduli Set

The redundant residue number system is introduced into DNA computing in order to overcome the negative effect caused by the instability of the biochemical reactions and the error hybridizations. Based on the Adleman-Lipton model and a special 3-moduli set, the DNA encoding scheme for redundant residue numbers is presented and the DNA algorithm of one-digit error detection is proposed. The parallel DNA arithmetic operation can be realized in redundant residue number system with error detection, and which can improve the reliability of DNA computing and simplify the DNA encoding scheme.

[1]  Max H. Garzon,et al.  Good encodings for DNA-based solutions to combinatorial problems , 1996, DNA Based Computers.

[2]  P. Steffan,et al.  A comparative study on different moduli sets in residue number system , 2012, 2012 International Conference on Computer Systems and Industrial Informatics.

[3]  Jin Xu,et al.  An Unenumerative DNA Computing Model for Vertex Coloring Problem , 2011, IEEE Transactions on NanoBioscience.

[4]  Ankur Sarker,et al.  Design of a DNA-based reversible arithmetic and logic unit. , 2015, IET nanobiotechnology.

[5]  Martyn Amos,et al.  Theoretical and Experimental DNA Computation , 1999, Bull. EATCS.

[6]  Limin Xiao,et al.  Arithmetic computation in the tile assembly model: Inversion over finite field GF(2n) , 2014, 2014 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology.

[7]  Karl-Heinz Zimmermann,et al.  DNA Computing Models , 2008 .

[8]  Jin Xu,et al.  Parallel DNA arithmetic operation based on n-moduli set , 2009, Appl. Math. Comput..

[9]  Byoung-Tak Zhang,et al.  Multiobjective evolutionary optimization of DNA sequences for reliable DNA computing , 2005, IEEE Transactions on Evolutionary Computation.

[10]  Abeer Eshra,et al.  An Odd Parity Checker Prototype Using DNAzyme Finite State Machine , 2014, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[11]  Vincenzo Manca,et al.  Algorithmic applications of XPCR , 2011, Natural Computing.

[12]  José M. Chaves-González,et al.  A multiobjective approach based on the behavior of fireflies to generate reliable DNA sequences for molecular computing , 2014, Appl. Math. Comput..

[13]  R. Deaton Thermodynamic Constraints on DNA-based Computing , 1998 .

[14]  Max H. Garzon,et al.  DNA Codeword Design: Theory and Applications , 2014, Parallel Process. Lett..

[15]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[16]  Lulu Qian,et al.  Supporting Online Material Materials and Methods Figs. S1 to S6 Tables S1 to S4 References and Notes Scaling up Digital Circuit Computation with Dna Strand Displacement Cascades , 2022 .

[17]  Jin Xu,et al.  Molecular logic computing model based on self-assembly of DNA nanoparticles , 2011 .

[18]  A. Omondi,et al.  Residue Number Systems: Theory and Implementation , 2007 .

[19]  Itamar Willner,et al.  puting using 3 3 multiplication matrices † , 2015 .

[20]  Ken-ichi Matsumoto,et al.  Procedures For Logic And Arithmetic Operations With Dna Molecules , 2004, Int. J. Found. Comput. Sci..

[21]  Sudheer Sahu,et al.  Autonomous programmable DNA nanorobotic devices using DNAzymes , 2009, Theor. Comput. Sci..

[22]  Alberto Credi,et al.  Molecular Machines and Motors: Recent Advances and Perspectives , 2014 .

[23]  Max H. Garzon,et al.  On codeword design in metric DNA spaces , 2009, Natural Computing.

[24]  Weng-Long Chang Fast Parallel DNA-Based Algorithms for Molecular Computation: Quadratic Congruence and Factoring Integers , 2012, IEEE Transactions on NanoBioscience.

[25]  Tadeusz Tomczak Hierarchical residue number systems with small moduli and simple converters , 2011, Int. J. Appl. Math. Comput. Sci..

[26]  Lin He,et al.  DNA ternary addition , 2006, Appl. Math. Comput..

[27]  J. Reif,et al.  Logical computation using algorithmic self-assembly of DNA triple-crossover molecules , 2000, Nature.

[28]  Minyi Guo,et al.  Fast parallel molecular algorithms for DNA-based computation: factoring integers , 2004, Proceedings. Fourth IEEE Symposium on Bioinformatics and Bioengineering.

[29]  F Guarnieri,et al.  Maya Blue Paint: An Ancient Nanostructured Material , 1996, Science.