Breaking the Kolmogorov Barrier in Model Reduction of Fluid Flows

Turbulence modeling has been always a challenge, given the degree of underlying spatial and temporal complexity. In this paper, we propose the use of a partitioned reduced order modeling (ROM) approach for efficient and effective approximation of turbulent flows. A piecewise linear subspace is tailored to capture the fine flow details in addition to the larger scales. We test the partitioned ROM for a decaying two-dimensional (2D) turbulent flow, known as 2D Kraichnan turbulence. The flow is initiated using an array of random vortices, corresponding to an arbitrary energy spectrum. We show that partitioning produces more accurate and stable results than standard ROM based on a global application of modal decomposition techniques. We also demonstrate the predictive capability of partitioned ROM through an energy spectrum analysis, where the recovered energy spectrum significantly converges to the full order model’s statistics with increased partitioning. Although the proposed approach incurs increased memory requirements to store the local basis functions for each partition, we emphasize that it permits the construction of more compact ROMs (i.e., of smaller dimension) with comparable accuracy, which in turn significantly reduces the online computational burden. Therefore, we consider that partitioning acts as a converter which reduces the cost of online deployment at the expense of offline and memory costs. Finally, we investigate the application of closure modeling to account for the effects of modal truncation on ROM dynamics. We illustrate that closure techniques can help to stabilize the results in the inertial range, but over-stabilization might take place in the dissipative range.

[1]  B. R. Noack,et al.  Optimal nonlinear eddy viscosity in Galerkin models of turbulent flows , 2014, Journal of Fluid Mechanics.

[2]  C. Leith Atmospheric Predictability and Two-Dimensional Turbulence , 1971 .

[3]  Charbel Farhat,et al.  Nonlinear model order reduction based on local reduced‐order bases , 2012 .

[4]  R. Murray,et al.  Model reduction for compressible flows using POD and Galerkin projection , 2004 .

[5]  Ionel Michael Navon,et al.  Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography , 1998 .

[6]  Gianluca Geraci,et al.  Bi-fidelity approximation for uncertainty quantification and sensitivity analysis of irradiated particle-laden turbulence , 2018, J. Comput. Phys..

[7]  Zhu Wang,et al.  Two-level discretizations of nonlinear closure models for proper orthogonal decomposition , 2011, J. Comput. Phys..

[8]  Nicholas K.-R. Kevlahan,et al.  A comparison of different analytical techniques for identifying structures in turbulence , 1994 .

[9]  Mehdi Ghommem,et al.  pyROM: A computational framework for reduced order modeling , 2019, J. Comput. Sci..

[10]  Scott T. M. Dawson,et al.  Model Reduction for Flow Analysis and Control , 2017 .

[11]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[12]  Zhu Wang,et al.  Approximate Deconvolution Reduced Order Modeling , 2015, 1510.02726.

[13]  Omer San,et al.  Sampling and resolution characteristics in reduced order models of shallow water equations: Intrusive vs nonintrusive , 2019, International Journal for Numerical Methods in Fluids.

[14]  Karen Willcox,et al.  An Accelerated Greedy Missing Point Estimation Procedure , 2016, SIAM J. Sci. Comput..

[15]  J. Peraire,et al.  OPTIMAL CONTROL OF VORTEX SHEDDING USING LOW-ORDER MODELS. PART II-MODEL-BASED CONTROL , 1999 .

[16]  A. Quarteroni,et al.  Reduced Basis Techniques For Nonlinear Conservation Laws , 2015 .

[17]  Gianluigi Rozza,et al.  A reduced order variational multiscale approach for turbulent flows , 2018, Advances in Computational Mathematics.

[18]  Omer San,et al.  Stabilized principal interval decomposition method for model reduction of nonlinear convective systems with moving shocks , 2018, Computational and Applied Mathematics.

[19]  M. Mitchell Waldrop,et al.  The chips are down for Moore’s law , 2016, Nature.

[20]  Guido Boffetta,et al.  Two-Dimensional Turbulence , 2012 .

[21]  David Galbally,et al.  Non‐linear model reduction for uncertainty quantification in large‐scale inverse problems , 2009 .

[22]  B. R. Noack,et al.  Closed-Loop Turbulence Control: Progress and Challenges , 2015 .

[23]  Matthew J. Zahr,et al.  An Efficient, Globally Convergent Method for Optimization Under Uncertainty Using Adaptive Model Reduction and Sparse Grids , 2019, SIAM/ASA J. Uncertain. Quantification.

[24]  Traian Iliescu,et al.  A New Closure Strategy for Proper Orthogonal Decomposition Reduced-Order Models , 2012 .

[25]  Zhu Wang,et al.  Artificial viscosity proper orthogonal decomposition , 2011, Math. Comput. Model..

[26]  Nadine Aubry,et al.  The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.

[27]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[28]  Zhu Wang,et al.  Numerical analysis of the Leray reduced order model , 2017, J. Comput. Appl. Math..

[29]  Janet S. Peterson,et al.  The Reduced Basis Method for Incompressible Viscous Flow Calculations , 1989 .

[30]  P. Houtekamer,et al.  A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .

[31]  David Montgomery,et al.  Two-Dimensional Turbulence , 2012 .

[32]  Hong Wang,et al.  POD/DEIM Reduced-Order Modeling of Time-Fractional Partial Differential Equations with Applications in Parameter Identification , 2016, J. Sci. Comput..

[33]  Laurent Cordier,et al.  Control of the cylinder wake in the laminar regime by Trust-Region methods and POD Reduced Order Models , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[34]  Y. Nie,et al.  Characterizing complex flows using adaptive sparse dynamic mode decomposition with error approximation , 2019, International Journal for Numerical Methods in Fluids.

[35]  Omer San,et al.  Memory embedded non-intrusive reduced order modeling of non-ergodic flows , 2019 .

[36]  Adrian Sandu,et al.  Comparison of POD reduced order strategies for the nonlinear 2D shallow water equations , 2014, International Journal for Numerical Methods in Fluids.

[37]  Omer San,et al.  Principal interval decomposition framework for POD reduced‐order modeling of convective Boussinesq flows , 2015 .

[38]  Clarence W. Rowley,et al.  Reduced-order models for control of fluids using the eigensystem realization algorithm , 2008, 0907.1907.

[39]  S. Ravindran A reduced-order approach for optimal control of fluids using proper orthogonal decomposition , 2000 .

[40]  Omer San,et al.  A dynamic closure modeling framework for model order reduction of geophysical flows , 2019, Physics of Fluids.

[41]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[42]  Christopher C. Pain,et al.  A domain decomposition non-intrusive reduced order model for turbulent flows , 2019, Computers & Fluids.

[43]  Vassilios Theofilis,et al.  Modal Analysis of Fluid Flows: An Overview , 2017, 1702.01453.

[44]  Juan Du,et al.  Parameterised non-intrusive reduced order methods for ensemble Kalman filter data assimilation , 2018, Computers & Fluids.

[45]  Rolf Steinhilper,et al.  The Digital Twin: Realizing the Cyber-Physical Production System for Industry 4.0☆ , 2017 .

[46]  R. Kraichnan Inertial Ranges in Two‐Dimensional Turbulence , 1967 .

[47]  Traian Iliescu,et al.  Data-Driven Filtered Reduced Order Modeling of Fluid Flows , 2017, SIAM J. Sci. Comput..

[48]  Charbel Farhat,et al.  The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows , 2012, J. Comput. Phys..

[49]  Yike Guo,et al.  A reduced order model for turbulent flows in the urban environment using machine learning , 2019, Building and Environment.

[50]  Clarence W. Rowley,et al.  Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses , 2012, J. Nonlinear Sci..

[51]  M Boulakia,et al.  Reduced-order modeling for cardiac electrophysiology. Application to parameter identification. , 2012, International journal for numerical methods in biomedical engineering.

[52]  Z. Popovic,et al.  Fluid control using the adjoint method , 2004, SIGGRAPH 2004.

[53]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[54]  Arthur Veldman,et al.  Proper orthogonal decomposition and low-dimensional models for driven cavity flows , 1998 .

[55]  O. San,et al.  High-order methods for decaying two-dimensional homogeneous isotropic turbulence , 2012, 1212.0920.

[56]  Lawrence Sirovich,et al.  Karhunen–Loève procedure for gappy data , 1995 .

[57]  Fei Tao,et al.  Digital twin-driven product design, manufacturing and service with big data , 2017, The International Journal of Advanced Manufacturing Technology.

[58]  Traian Iliescu,et al.  Variational multiscale proper orthogonal decomposition: Navier‐stokes equations , 2012, 1210.7389.

[59]  R. Stevens,et al.  Characterizing the Coherent Structures Within and Above Large Wind Farms , 2019, Boundary-Layer Meteorology.

[60]  A. Kolmogoroff,et al.  Uber Die Beste Annaherung Von Funktionen Einer Gegebenen Funktionenklasse , 1936 .

[61]  B. R. Noack,et al.  On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body , 2013, Journal of Fluid Mechanics.

[62]  Habib N. Najm,et al.  Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .

[63]  Karsten Urban,et al.  Decay of the Kolmogorov N-width for wave problems , 2019, Appl. Math. Lett..

[64]  K. ITO,et al.  Reduced Basis Method for Optimal Control of Unsteady Viscous Flows , 2001 .

[65]  Clarence W. Rowley,et al.  A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.

[66]  Ionel M. Navon,et al.  Efficiency of a POD-based reduced second-order adjoint model in 4 D-Var data assimilation , 2006 .

[67]  Benjamin Peherstorfer,et al.  Feedback Control for Systems with Uncertain Parameters Using Online-Adaptive Reduced Models , 2017, SIAM J. Appl. Dyn. Syst..

[68]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[69]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[70]  P. Houtekamer,et al.  Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .

[71]  Karen Willcox,et al.  Engineering Design with Digital Thread , 2018 .

[72]  Harbir Antil,et al.  Galerkin v. least-squares Petrov-Galerkin projection in nonlinear model reduction , 2015, J. Comput. Phys..

[73]  Wr Graham,et al.  OPTIMAL CONTROL OF VORTEX SHEDDING USING LOW-ORDER MODELS. PART I-OPEN-LOOP MODEL DEVELOPMENT , 1999 .

[74]  Andrew M. Stuart,et al.  Evaluating Data Assimilation Algorithms , 2011, ArXiv.

[75]  G. Batchelor Computation of the Energy Spectrum in Homogeneous Two‐Dimensional Turbulence , 1969 .

[76]  Ionel M. Navon,et al.  A reduced‐order approach to four‐dimensional variational data assimilation using proper orthogonal decomposition , 2007 .

[77]  Traian Iliescu,et al.  Proper orthogonal decomposition closure models for turbulent flows: A numerical comparison , 2011, 1106.3585.

[78]  J. R. Powell The Quantum Limit to Moore's Law , 2008 .

[79]  D. Rempfer,et al.  On Low-Dimensional Galerkin Models for Fluid Flow , 2000 .

[80]  Razvan Stefanescu,et al.  Comparative numerical analysis using reduced-order modeling strategies for nonlinear large-scale systems , 2017, J. Comput. Appl. Math..

[81]  E. Bou‐Zeid,et al.  Very-Large-Scale Motions in the Atmospheric Boundary Layer Educed by Snapshot Proper Orthogonal Decomposition , 2014, Boundary-Layer Meteorology.

[82]  Siep Weiland,et al.  Missing Point Estimation in Models Described by Proper Orthogonal Decomposition , 2004, IEEE Transactions on Automatic Control.

[83]  Benjamin Peherstorfer,et al.  Online Adaptive Model Reduction for Nonlinear Systems via Low-Rank Updates , 2015, SIAM J. Sci. Comput..