On the Construction of Optimal Monotone Cubic Spline Interpolations

In this paper we derive necessary optimality conditions for an interpolating spline function which minimizes the Holladay approximation of the energy functional and which stays monotone if the given interpolation data are monotone. To this end optimal control theory for state-restricted optimal control problems is applied. The necessary conditions yield a complete characterization of the optimal spline. In the case of two or three interpolation knots, which we call thelocalcase, the optimality conditions are treated analytically. They reduce to polynomial equations which can very easily be solved numerically. These results are used for the construction of a numerical algorithm for the optimal monotone spline in the general (global) case via Newton's method. Here, the local optimal spline serves as a favourable initial estimation for the additional grid points of the optimal spline. Some numerical examples are presented which are constructed by FORTRAN and MATLAB programs.

[1]  C. Reinsch,et al.  An Analysis of Two Algorithms for Shape-Preserving Cubic Spline Interpolation , 1989 .

[2]  R. E. Carlson,et al.  Monotone Piecewise Cubic Interpolation , 1980 .

[3]  Kurt Chudej,et al.  Optimale Steuerung des Aufstiegs eines zweistufigen Hyperschall-Raumtransporters , 1994 .

[4]  Suresh P. Sethi,et al.  A Survey of the Maximum Principles for Optimal Control Problems with State Constraints , 1995, SIAM Rev..

[5]  Asen L. Dontchev,et al.  Best interpolation in a strip , 1993 .

[6]  U. Hornung,et al.  Interpolation by smooth functions under restrictions on the derivatives , 1980 .

[7]  Madan L. Puri,et al.  A local algorithm for constructing non-negative cubic splines , 1991 .

[8]  Jochen W. Schmidt,et al.  An always successful method in univariate convex $C^2$ interpolation , 1995 .

[9]  D. Jacobson,et al.  New necessary conditions of optimality for control problems with state-variable inequality constraints , 1971 .

[10]  Hiroshi Akima,et al.  A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures , 1970, JACM.

[11]  Ulrich Hornung,et al.  Monotone Spline-Interpolation , 1978 .

[12]  R. Bulirsch,et al.  Interpolation und genäherte Quadratur , 1968 .

[13]  L. Schumaker,et al.  Curves and surfaces in geometric design , 1994 .

[14]  Tommy Elfving,et al.  Best Constrained Approximation in Hilbert Space and Interpolation by Cubic Splines Subject to Obstacles , 1995, SIAM J. Sci. Comput..

[15]  Helmuth Späth,et al.  Two-dimensional spline interpolation algorithms , 1993 .

[16]  R. Sauer,et al.  Mathematische Hilfsmittel Des Ingenieurs , 1967 .

[17]  Gerhard Opfer,et al.  The derivation of cubic splines with obstacles by methods of optimization and optimal control , 1987 .

[18]  Gerhard Opfer,et al.  Nonnegative splines, in particular of degree five , 1998 .