An Efficiency-Enhanced Hybrid Supply Modulator With Single-Capacitor Current-Integration Control

This paper presents a high-efficiency wideband hybrid supply modulator (HSM). We show that proper control of the average current from the class-AB linear amplifier (LA) and proper selection of the inductor value are essential to efficiency optimization. In line with the above criteria, a single-capacitor current-integration (SCCI) control method is proposed. Current integration is achieved by using a single capacitor, circumventing the need of the high-speed full-range current sensor required for conventional HSMs and reducing the design complexity greatly. The ripple current of the LA is controlled indirectly, and enhanced efficiency is achieved by enforcing the average output current from the LA to be around zero. A wideband LA is proposed to suppress the output voltage ripple. A proof-of-concept design using an inductor with an optimized value of 100 nH is fabricated in 130 nm CMOS technology. It switches at a peak frequency of 50 MHz, achieves up to 8% efficiency improvement when compared to recent works, and is able to track a 0.8 Vpp sinusoidal signal with high fidelity up to 10 MHz. The measured output voltage ripple is reduced to below 8 mV. The peak conversion efficiency is 88.3% at the maximum output power of 23 dBm.

[1]  Tao Jiang,et al.  An Overview: Peak-to-Average Power Ratio Reduction Techniques for OFDM Signals , 2008, IEEE Transactions on Broadcasting.

[2]  Howard C. Luong,et al.  A CMOS WCDMA/WLAN Digital Polar Transmitter With AM Replica Feedback Linearization , 2013, IEEE Journal of Solid-State Circuits.

[3]  Philip K. T. Mok,et al.  A Two-Phase Switching Hybrid Supply Modulator for RF Power Amplifiers With 9% Efficiency Improvement , 2010, IEEE Journal of Solid-State Circuits.

[4]  King-Man Lai,et al.  Charge Balance Analysis and State Transition Analysis of Hysteretic Voltage Mode Switching Converters , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  Peter M. Asbeck,et al.  A Combined Series-Parallel Hybrid Envelope Amplifier for Envelope Tracking Mobile Terminal RF Power Amplifier Applications , 2012, IEEE Journal of Solid-State Circuits.

[6]  Vladimir Molata,et al.  17.6 Envelope modulator for multimode transmitters with AC-coupled multilevel regulators , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[7]  Joseph Sankman,et al.  A 40-MHz 85.8%-peak-efficiency switching-converter-only dual-phase envelope modulator for 2-W 10-MHz LTE power amplifier , 2014, 2014 Symposium on VLSI Circuits Digest of Technical Papers.

[8]  Bertan Bakkaloglu,et al.  Combined Linear and $\Delta$-Modulated Switch-Mode PA Supply Modulator for Polar Transmitters , 2009, IEEE Journal of Solid-State Circuits.

[9]  Jose C. Pedro,et al.  The Linearity- Efficiency , 2010 .

[10]  P. Reynaert,et al.  A 1.75-GHz polar modulated CMOS RF power amplifier for GSM-EDGE , 2005, IEEE Journal of Solid-State Circuits.

[11]  Howard C. Luong,et al.  A WCDMA/WLAN digital polar transmitter with low-noise ADPLL, wide-band PM/AM modulator and linearized PA in 65nm CMOS , 2014, ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC).

[12]  Ali M. Niknejad,et al.  A fully-integrated efficient CMOS inverse Class-D power amplifier for digital polar transmitters , 2012, 2011 IEEE Radio Frequency Integrated Circuits Symposium.

[13]  E.M. Cherry,et al.  Loop gain, input impedance and output impedance of feedback amplifiers , 2008, IEEE Circuits and Systems Magazine.

[14]  Bruce A. Wooley,et al.  A Digitally Modulated Polar CMOS Power Amplifier With a 20-MHz Channel Bandwidth , 2008, IEEE J. Solid State Circuits.

[15]  Amirpouya Kavousian,et al.  A Digitally Modulated Polar CMOS Power Amplifier With a 20-MHz Channel Bandwidth , 2008, IEEE Journal of Solid-State Circuits.

[16]  Bumman Kim,et al.  Push the Envelope: Design Concepts for Envelope-Tracking Power Amplifiers , 2013, IEEE Microwave Magazine.

[17]  P Reynaert Polar Modulation , 2011, IEEE Microwave Magazine.

[18]  Kevin Chen,et al.  Circuits and System Design of RF Polar Transmitters Using Envelope-Tracking and SiGe Power Amplifiers for Mobile WiMAX , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  Wing-Hung Ki,et al.  A Cascode Miller-Compensated Three-Stage Amplifier With Local Impedance Attenuation for Optimized Complex-Pole Control , 2015, IEEE Journal of Solid-State Circuits.

[20]  Feipeng Wang,et al.  An Improved Power-Added Efficiency 19-dBm Hybrid Envelope Elimination and Restoration Power Amplifier for 802.11g WLAN Applications , 2006, IEEE Transactions on Microwave Theory and Techniques.

[21]  Peter M. Asbeck,et al.  High-efficiency power amplifier using dynamic power-supply voltage for CDMA applications , 1999 .

[22]  Min-Chul Lee,et al.  A 2 W CMOS Hybrid Switching Amplitude Modulator for EDGE Polar Transmitters , 2007, IEEE Journal of Solid-State Circuits.

[23]  Robert W. Erickson,et al.  Fundamentals of Power Electronics , 2001 .

[24]  Hoi Lee,et al.  A 5-MHz 91% peak-power-efficiency buck regulator with auto-selectable peak- and valley-current control , 2010, IEEE Custom Integrated Circuits Conference 2010.

[25]  Behzad Razavi,et al.  RF Microelectronics (2nd Edition) (Prentice Hall Communications Engineering and Emerging Technologies Series) , 2011 .

[26]  Bertan Bakkaloglu,et al.  A 10 MHz Bandwidth, 2 mV Ripple PA Regulator for CDMA Transmitters , 2008, IEEE Journal of Solid-State Circuits.

[27]  Ali M. Niknejad,et al.  An Efficient Mixed-Signal 2.4-GHz Polar Power Amplifier in 65-nm CMOS Technology , 2011, IEEE Journal of Solid-State Circuits.

[28]  G.A. Rincon-Mora,et al.  A high-efficiency linear RF power amplifier with a power-tracking dynamically adaptive buck-boost supply , 2004, IEEE Transactions on Microwave Theory and Techniques.

[29]  Bram Nauta,et al.  A Wideband Supply Modulator for 20 MHz RF Bandwidth Polar PAs in 65 nm CMOS , 2009, IEEE Journal of Solid-State Circuits.

[30]  Michael Murray. Elliott Single sideband transmission by envelope elimination and restoration. , 1953 .

[31]  Eiji Yoshida,et al.  A 1.95 GHz Fully Integrated Envelope Elimination and Restoration CMOS Power Amplifier Using Timing Alignment Technique for WCDMA and LTE , 2014, IEEE Journal of Solid-State Circuits.

[32]  Peter M. Asbeck,et al.  Linearity and efficiency enhancement strategies for 4G wireless power amplifier designs , 2008, 2008 IEEE Custom Integrated Circuits Conference.

[33]  Hao-Ping Hong,et al.  An AC-coupled hybrid envelope modulator for HSUPA transmitters with 80% modulator efficiency , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[34]  Feipeng Wang,et al.  A Monolithic High-Efficiency 2.4-GHz 20-dBm SiGe BiCMOS Envelope-Tracking OFDM Power Amplifier , 2007, IEEE Journal of Solid-State Circuits.

[35]  Paul T. M. van Zeijl,et al.  A Digital Envelope Modulator for a WLAN OFDM Polar Transmitter in 90 nm CMOS , 2007, IEEE Journal of Solid-State Circuits.

[36]  Pedro Miguel Lavrador,et al.  The Linearity-Efficiency Compromise , 2010, IEEE Microwave Magazine.

[37]  A. Scuderi,et al.  A 25 dBm Digitally Modulated CMOS Power Amplifier for WCDMA/EDGE/OFDM With Adaptive Digital Predistortion and Efficient Power Control , 2009, IEEE Journal of Solid-State Circuits.

[38]  Peter M. Asbeck,et al.  A CMOS dual-switching power-supply modulator with 8% efficiency improvement for 20MHz LTE Envelope Tracking RF power amplifiers , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[39]  Jeffrey S. Walling,et al.  Linearizing CMOS Switching Power Amplifiers Using Supply Regulators , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.