SAHARA: A Simplified AtmospHeric Correction AlgoRithm for Chinese gAofen Data: 1. Aerosol Algorithm

The recently launched Chinese GaoFen-4 (GF4) satellite provides valuable information to obtain geophysical parameters describing conditions in the atmosphere and at the Earth’s surface. The surface reflectance is an important parameter for the estimation of other remote sensing parameters linked to the eco-environment, atmosphere environment and energy balance. One of the key issues to achieve atmospheric corrected surface reflectance is to precisely retrieve the aerosol optical properties, especially Aerosol Optical Depth (AOD). The retrieval of AOD and corresponding atmospheric correction procedure normally use the full radiative transfer calculation or Look-Up-Table (LUT) methods, which is very time-consuming. In this paper, a Simplified AtmospHeric correction AlgoRithm for gAofen data (SAHARA) is presented for the retrieval of AOD and corresponding atmospheric correction procedure. This paper is the first part of the algorithm, which describes the aerosol retrieval algorithm. In order to achieve high-accuracy analytical form for both LUT and surface parameterization, the MODIS Dark-Target (DT) aerosol types and Deep Blue (DB) similar surface parameterization have been proposed for GF4 data. Limited Gaofen observations (i.e., all that were available) have been tested and validated. The retrieval results agree quite well with MODIS Collection 6.0 aerosol product, with a correlation coefficient of R2 = 0.72. The comparison between GF4 derived AOD and Aerosol Robotic Network (AERONET) observations has a correlation coefficient of R2 = 0.86. The algorithm, after comprehensive validation, can be used as an operational running algorithm for creating aerosol product from the Chinese GF4 satellite.

[1]  Alexander Smirnov,et al.  Characterization of the optical properties of biomass burning aerosols in Zambia during the 1997 ZIBBEE field campaign , 2001 .

[2]  Tong Xudong Development of China high-resolution earth observation system , 2016 .

[3]  Gérard Dedieu,et al.  A Multi-Temporal and Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VENμS and Sentinel-2 Images , 2015, Remote. Sens..

[4]  Zhiquan Liu,et al.  Assimilating aerosol observations with a “hybrid” variational‐ensemble data assimilation system , 2014 .

[5]  Thomas Holzer-Popp,et al.  Retrieving aerosol optical depth and type in the boundary layer over land and ocean from simultaneous GOME spectrometer and ATSR‐2 radiometer measurements 2. Case study application and validation , 2002 .

[6]  H. Rahman,et al.  Coupled surface-atmosphere reflectance (CSAR) model: 2. Semiempirical surface model usable with NOAA advanced very high resolution radiometer data , 1993 .

[7]  Michael E. Schaepman,et al.  Fast and simple model for atmospheric radiative transfer , 2010 .

[8]  Zhanqing Li,et al.  Validation of MODIS aerosol products by CSHNET over China , 2007 .

[9]  Yong Xue,et al.  Retrieval of aerosol optical depth over land based on a time series technique using MSG/SEVIRI data , 2012 .

[10]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[11]  Linlu Mei,et al.  Retrieval of aerosol optical properties using MERIS observations: Algorithm and some first results. , 2017, Remote sensing of environment.

[12]  C. Fröhlich,et al.  New determination of Rayleigh scattering in the terrestrial atmosphere. , 1980, Applied optics.

[13]  Michael E. Schaepman,et al.  Fast retrieval of aerosol optical depth and its sensitivity to surface albedo using remote sensing data , 2012 .

[14]  Xiangao Xia,et al.  Ground-based aerosol climatology of China: aerosol optical depths from the China Aerosol Remote Sensing Network (CARSNET) 2002–2013 , 2015 .

[15]  Linlu Mei,et al.  XBAER-derived aerosol optical thickness from OLCI / Sentinel-3 observation , 2017 .

[16]  Huizheng CHE Interactive comment on “Ground-based aerosol climatology of China: aerosol optical depths from the China Aerosol Remote Sensing Network , 2015 .

[17]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[18]  Yong Xue,et al.  Development, Production and Evaluation of Aerosol Climate Data Records from European Satellite Observations (Aerosol_cci) , 2016, Remote. Sens..

[19]  Linlu Mei,et al.  A Cloud masking algorithm for the XBAER aerosol retrieval using MERIS data , 2017 .

[20]  B. Holben,et al.  MODIS 3 km aerosol product: applications over land in an urban/suburban region , 2013 .

[21]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[22]  Vladimir V. Rozanov,et al.  A parameterization of the diffuse transmittance and reflectance for aerosol remote sensing problems , 2005 .

[23]  Yujie Wang,et al.  Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm , 2011 .

[24]  Lu Leng,et al.  Inversion of Aerosol Optical Depth Based on the CCD and IRS Sensors on the HJ-1 Satellites , 2014, Remote. Sens..

[25]  Eleonora P. Zege,et al.  Iterative procedure for retrieval of spectral aerosol optical thickness and surface reflectance from satellite data using fast radiative transfer code and its application to MERIS measurements , 2009 .

[26]  Yong Xue,et al.  High-resolution aerosol remote sensing retrieval over urban areas by synergetic use of HJ-1 CCD and MODIS data , 2011 .

[27]  Oleg Dubovik,et al.  Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land , 2007 .

[28]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[29]  Alan H. Strahler,et al.  Global land cover mapping from MODIS: algorithms and early results , 2002 .

[30]  Ying Wang,et al.  High-Spatial-Resolution Aerosol Optical Properties Retrieval Algorithm Using Chinese High-Resolution Earth Observation Satellite I , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[31]  C. Bassani,et al.  Effect of the Aerosol Type Selection for the Retrieval of Shortwave Ground Net Radiation: Case Study Using Landsat 8 Data , 2016 .

[32]  Massimo Menenti,et al.  Improved MODIS Dark Target aerosol optical depth algorithm over land: angular effect correction , 2016 .

[33]  Thomas F. Eck,et al.  Measurements of irradiance attenuation and estimation of aerosol single scattering albedo for biomass burning aerosols in Amazonia , 1998 .

[34]  Claudia Giardino,et al.  The impact of the microphysical properties of aerosol on the atmospheric correction of hyperspectral data in coastal waters , 2015 .

[35]  E. Shettle,et al.  Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties , 1979 .

[36]  Dimitris G. Kaskaoutis,et al.  Aerosol climatology over four AERONET sites: An overview , 2008 .

[37]  K. Moffett,et al.  Remote Sens , 2015 .

[38]  Muhammad Bilal,et al.  A simplified high resolution MODIS aerosol retrieval algorithm (SARA) for use over mixed surfaces , 2013 .

[39]  Wenji Zhao,et al.  Improved aerosol retrieval algorithm using Landsat images and its application for PM10 monitoring over urban areas , 2015 .

[40]  Lin Sun,et al.  Aerosol Optical Depth Retrieval over Bright Areas Using Landsat 8 OLI Images , 2015, Remote. Sens..

[41]  Thomas Holzer-Popp,et al.  Retrieving aerosol optical depth and type in the boundary layer over land and ocean from simultaneous GOME spectrometer and ATSR-2 radiometer measurements, 1, Method description , 2002 .

[42]  Jin Huang,et al.  Enhanced Deep Blue aerosol retrieval algorithm: The second generation , 2013 .

[43]  Hua Xu,et al.  High temporal resolution aerosol retrieval using Geostationary Ocean Color Imager: application and initial validation , 2014 .

[44]  Yong Xue,et al.  Retrieval of aerosol optical depth over land surfaces from AVHRR data , 2013 .

[45]  Qi Zhang,et al.  The Variations and Trends of MODIS C5 & C6 Products' Errors in the Recent Decade over the Background and Urban Areas of North China , 2016, Remote. Sens..

[46]  L. Remer,et al.  The Collection 6 MODIS aerosol products over land and ocean , 2013 .

[47]  Yoram J. Kaufman,et al.  On the twilight zone between clouds and aerosols , 2007 .

[48]  Quanhua Liu,et al.  Three‐dimensional variational assimilation of MODIS aerosol optical depth: Implementation and application to a dust storm over East Asia , 2011 .

[49]  J. Roujean,et al.  A bidirectional reflectance model of the Earth's surface for the correction of remote sensing data , 1992 .

[50]  Gabriele Curci,et al.  Effect of the Aerosol Model Assumption on the Atmospheric Correction over Land: Case Studies with CHRIS/PROBA Hyperspectral Images over Benelux , 2015, Remote. Sens..

[51]  M. Claverie,et al.  Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. , 2016, Remote sensing of environment.

[52]  E. Vermote,et al.  Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer , 1997 .

[53]  J. Hansen,et al.  Radiative forcing and climate response , 1997 .

[54]  Lorraine A. Remer,et al.  MODIS 3 km aerosol product: algorithm and global perspective , 2013 .

[55]  John P. Burrows,et al.  Retrieval of spectral aerosol optical thickness over land using ocean color sensors MERIS and SeaWiFS , 2010 .

[56]  David J. Diner,et al.  Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite data , 2007 .