The shape of collaborations

[1]  S. Weinberger Persistent Homology , 2019, Brain Network Analysis.

[2]  G. Petri,et al.  Topological analysis of data , 2017, EPJ Data Science.

[3]  Jean-Gabriel Young,et al.  Construction of and efficient sampling from the simplicial configuration model. , 2017, Physical review. E.

[4]  Owen T. Courtney,et al.  Weighted growing simplicial complexes. , 2017, Physical review. E.

[5]  Xingyi Zhang,et al.  Overlapping Community Detection based on Network Decomposition , 2016, Scientific Reports.

[6]  M. Coccia,et al.  Evolution and convergence of the patterns of international scientific collaboration , 2016, Proceedings of the National Academy of Sciences.

[7]  Primoz Skraba,et al.  Topology, Big Data and Optimization , 2016 .

[8]  Albert-László Barabási,et al.  Control Principles of Complex Networks , 2015, ArXiv.

[9]  G. Bianconi,et al.  Complex quantum network geometries: Evolution and phase transitions. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Ginestra Bianconi,et al.  Emergent Complex Network Geometry , 2014, Scientific Reports.

[11]  G. Petri,et al.  Homological scaffolds of brain functional networks , 2014, Journal of The Royal Society Interface.

[12]  Piet Van Mieghem,et al.  Epidemic processes in complex networks , 2014, ArXiv.

[13]  Stasa Milojevic,et al.  Principles of scientific research team formation and evolution , 2014, Proceedings of the National Academy of Sciences.

[14]  C. J. Carstens,et al.  Persistent Homology of Collaboration Networks , 2013 .

[15]  Ananthram Swami,et al.  Simplifying the homology of networks via strong collapses , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[16]  Francesco Vaccarino,et al.  Topological Strata of Weighted Complex Networks , 2013, PloS one.

[17]  W. Deming,et al.  Persistent Homology ? , 2013 .

[18]  Ralph Kenna,et al.  Managing research quality: critical mass and optimal academic research group size , 2012 .

[19]  L. Bettencourt,et al.  Evolution and structure of sustainability science , 2011, Proceedings of the National Academy of Sciences.

[20]  Jari Saramäki,et al.  The strength of strong ties in scientific collaboration networks , 2011, ArXiv.

[21]  Katy Börner,et al.  A Multi-Level Systems Perspective for the Science of Team Science , 2010, Science Translational Medicine.

[22]  Afra Zomorodian,et al.  The tidy set: a minimal simplicial set for computing homology of clique complexes , 2010, SCG.

[23]  Ralph Kenna,et al.  Critical mass and the dependency of research quality on group size , 2010, Scientometrics.

[24]  Dmitriy Morozov,et al.  Zigzag persistent homology and real-valued functions , 2009, SCG '09.

[25]  R. Ponds,et al.  The limits to internationalization of scientific research collaboration , 2009 .

[26]  Andrea Lancichinetti,et al.  Detecting the overlapping and hierarchical community structure in complex networks , 2008, 0802.1218.

[27]  S. Fortunato,et al.  Statistical physics of social dynamics , 2007, 0710.3256.

[28]  Gabriel Szulanski,et al.  Growing through copying: the negative consequences of innovation on franchise network growth , 2008 .

[29]  Martin Rosvall,et al.  Maps of random walks on complex networks reveal community structure , 2007, Proceedings of the National Academy of Sciences.

[30]  Weixiong Zhang,et al.  Identifying network communities with a high resolution. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[32]  Roger Guimerà,et al.  Extracting the hierarchical organization of complex systems , 2007, Proceedings of the National Academy of Sciences.

[33]  A. Barabasi,et al.  Quantifying social group evolution , 2007, Nature.

[34]  Nicolas Carayol,et al.  Individual and collective determinants of academic scientists' productivity , 2006, Inf. Econ. Policy.

[35]  Loet Leydesdorff,et al.  Network Structure, Self-Organization and the Growth of International Collaboration in Science.Research Policy, 34(10), 2005, 1608-1618. , 2005, 0911.4299.

[36]  T. Vicsek,et al.  Uncovering the overlapping community structure of complex networks in nature and society , 2005, Nature.

[37]  Roger Guimerà,et al.  Team Assembly Mechanisms Determine Collaboration Network Structure and Team Performance , 2005, Science.

[38]  T. Vicsek,et al.  Clique percolation in random networks. , 2005, Physical review letters.

[39]  S. Redner,et al.  Network growth by copying. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Alessandro Vespignani,et al.  Studying the emerging global brain: Analyzing and visualizing the impact of co-authorship teams , 2005, Complex..

[41]  M. Newman Coauthorship networks and patterns of scientific collaboration , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[42]  W. Glänzel,et al.  Analysing Scientific Networks Through Co-Authorship , 2004 .

[43]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. Newman,et al.  The structure of scientific collaboration networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Jianhua Lin,et al.  Divergence measures based on the Shannon entropy , 1991, IEEE Trans. Inf. Theory.

[46]  Clarke Bl,et al.  Communication patterns of biomedical scientists. I. Multiple authorship and sponsorship of Federal Program volunteer papers. , 1967 .

[47]  B. L. Clarke,et al.  Communication patterns of biomedical scientists. I. Multiple authorship and sponsorship of Federal Program volunteer papers. , 1967, Federation proceedings.

[48]  B. L. Clarke Multiple Authorship Trends in Scientific Papers , 1964, Science.

[49]  R. Ho Algebraic Topology , 2022 .