An inertia formula for Hermitian matrices with sparse inverses

Abstract Let A ∈ Mn be a nonsingular Hermitian matrix, let G be a chordal graph on vertices {1,…,n}, and suppose that G(A−1) ⊆ G. Then the inertia of A may be expressed in a simple way in terms of the inertias of those principal submatrices of A corresponding to certain readily identifiable sets of vertices of G. Specifically, we prove that the inertia i(A) satisfies the identity i(A)= ∑ α∈C i(A[α])− ∑ β∈S m(β)i(A[β]) , in which C denotes the collection of maximal cliques of G, S denotes the collection of minimal vertex separators of G, and m(β) is the multiplicity of a separator β.

[1]  Charles R. Johnson,et al.  Positive definite completions of partial Hermitian matrices , 1984 .

[2]  Charles R. Johnson,et al.  Determinantal formulae for matrix completions associated with chordal graphs , 1989 .

[3]  Israel Gohberg,et al.  On negative eigenvalues of selfadjoint eztensions of band matrices , 1988 .

[4]  Miroslav Fiedler,et al.  Completing a Matrix When Certain Entries of Its Inverse Are Specified , 1986 .

[5]  D. Rose Triangulated graphs and the elimination process , 1970 .

[6]  G. Rota On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .

[7]  B. Peyton Some Applications of Clique Trees to the Solution of Sparse Linear Systems , 1986 .

[8]  Determinantal formulae for matrices with sparse inverses , 1984 .

[9]  G. Dirac On rigid circuit graphs , 1961 .

[10]  Catriel Beeri,et al.  On the Desirability of Acyclic Database Schemes , 1983, JACM.

[11]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[12]  Michael E. Lundquist Zero Patterns, Chordal Graphs and Matrix Completions , 1990 .

[13]  Charles R. Johnson,et al.  Inertia possibilities for completions of partial hermitian matrices , 1984 .

[14]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[15]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[16]  F. Gavril The intersection graphs of subtrees in tree are exactly the chordal graphs , 1974 .

[17]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[18]  Charles R. Johnson,et al.  Spanning-tree extensions of the Hadamard-Fischer inequalities , 1985 .

[19]  E. Haynsworth Determination of the inertia of a partitioned Hermitian matrix , 1968 .