An inertia formula for Hermitian matrices with sparse inverses
暂无分享,去创建一个
[1] Charles R. Johnson,et al. Positive definite completions of partial Hermitian matrices , 1984 .
[2] Charles R. Johnson,et al. Determinantal formulae for matrix completions associated with chordal graphs , 1989 .
[3] Israel Gohberg,et al. On negative eigenvalues of selfadjoint eztensions of band matrices , 1988 .
[4] Miroslav Fiedler,et al. Completing a Matrix When Certain Entries of Its Inverse Are Specified , 1986 .
[5] D. Rose. Triangulated graphs and the elimination process , 1970 .
[6] G. Rota. On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .
[7] B. Peyton. Some Applications of Clique Trees to the Solution of Sparse Linear Systems , 1986 .
[8] Determinantal formulae for matrices with sparse inverses , 1984 .
[9] G. Dirac. On rigid circuit graphs , 1961 .
[10] Catriel Beeri,et al. On the Desirability of Acyclic Database Schemes , 1983, JACM.
[11] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[12] Michael E. Lundquist. Zero Patterns, Chordal Graphs and Matrix Completions , 1990 .
[13] Charles R. Johnson,et al. Inertia possibilities for completions of partial hermitian matrices , 1984 .
[14] D. R. Fulkerson,et al. Incidence matrices and interval graphs , 1965 .
[15] Robert E. Tarjan,et al. Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..
[16] F. Gavril. The intersection graphs of subtrees in tree are exactly the chordal graphs , 1974 .
[17] M. Golumbic. Algorithmic graph theory and perfect graphs , 1980 .
[18] Charles R. Johnson,et al. Spanning-tree extensions of the Hadamard-Fischer inequalities , 1985 .
[19] E. Haynsworth. Determination of the inertia of a partitioned Hermitian matrix , 1968 .