ChemProt: a disease chemical biology database

Systems pharmacology is an emergent area that studies drug action across multiple scales of complexity, from molecular and cellular to tissue and organism levels. There is a critical need to develop network-based approaches to integrate the growing body of chemical biology knowledge with network biology. Here, we report ChemProt, a disease chemical biology database, which is based on a compilation of multiple chemical–protein annotation resources, as well as disease-associated protein–protein interactions (PPIs). We assembled more than 700 000 unique chemicals with biological annotation for 30 578 proteins. We gathered over 2-million chemical–protein interactions, which were integrated in a quality scored human PPI network of 428 429 interactions. The PPI network layer allows for studying disease and tissue specificity through each protein complex. ChemProt can assist in the in silico evaluation of environmental chemicals, natural products and approved drugs, as well as the selection of new compounds based on their activity profile against most known biological targets, including those related to adverse drug events. Results from the disease chemical biology database associate citalopram, an antidepressant, with osteogenesis imperfect and leukemia and bisphenol A, an endocrine disruptor, with certain types of cancer, respectively. The server can be accessed at http://www.cbs.dtu.dk/services/ChemProt/.

[1]  John P. Overington,et al.  ChEMBL: a large-scale bioactivity database for drug discovery , 2011, Nucleic Acids Res..

[2]  Imre Vastrik,et al.  Reactome: a knowledgebase of biological pathways , 2004, OTM Workshops.

[3]  Martin Vingron,et al.  IntAct: an open source molecular interaction database , 2004, Nucleic Acids Res..

[4]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[5]  Xiaohua Ma,et al.  Mechanisms of drug combinations: interaction and network perspectives , 2009, Nature Reviews Drug Discovery.

[6]  Tudor I. Oprea,et al.  Target, chemical and bioactivity databases – integration is key , 2006 .

[7]  PagelPhilipp,et al.  The MIPS mammalian protein--protein interaction database , 2005 .

[8]  Michael J. Keiser,et al.  Relating protein pharmacology by ligand chemistry , 2007, Nature Biotechnology.

[9]  Philip E. Bourne,et al.  PROMISCUOUS: a database for network-based drug-repositioning , 2010, Nucleic Acids Res..

[10]  Tudor I. Oprea,et al.  Transporter‐Mediated Efflux Influences CNS Side Effects: ABCB1, from Antitarget to Target , 2010, Molecular informatics.

[11]  R. Halden Plastics and health risks. , 2010, Annual review of public health.

[12]  Rachael P. Huntley,et al.  The UniProt-GO Annotation database in 2011 , 2011, Nucleic Acids Res..

[13]  Erik L. L. Sonnhammer,et al.  Inparanoid: a comprehensive database of eukaryotic orthologs , 2004, Nucleic Acids Res..

[14]  S. Batalov,et al.  A gene atlas of the mouse and human protein-encoding transcriptomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Natalie Wilson,et al.  Human Protein Reference Database , 2004, Nature Reviews Molecular Cell Biology.

[16]  R. Solé,et al.  The topology of drug-target interaction networks: implicit dependence on drug properties and target families. , 2009, Molecular bioSystems.

[17]  Y. Martin,et al.  Do structurally similar molecules have similar biological activity? , 2002, Journal of medicinal chemistry.

[18]  Patrick R. Griffin,et al.  PubChem promiscuity: a web resource for gathering compound promiscuity data from PubChem , 2012, Bioinform..

[19]  Michael J. Keiser,et al.  Predicting new molecular targets for known drugs , 2009, Nature.

[20]  Søren Brunak,et al.  Deciphering Diseases and Biological Targets for Environmental Chemicals using Toxicogenomics Networks , 2010, PLoS Comput. Biol..

[21]  P. Bork,et al.  A side effect resource to capture phenotypic effects of drugs , 2010, Molecular systems biology.

[22]  Mindy I. Davis,et al.  Comprehensive analysis of kinase inhibitor selectivity , 2011, Nature Biotechnology.

[23]  Tudor I. Oprea,et al.  High-Throughput Screening for Daunorubicin-Mediated Drug Resistance Identifies Mometasone Furoate as a Novel ABCB1-Reversal Agent , 2008, Journal of biomolecular screening.

[24]  Xin Wen,et al.  BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities , 2006, Nucleic Acids Res..

[25]  P. Bork,et al.  Proteome survey reveals modularity of the yeast cell machinery , 2006, Nature.

[26]  Bin Chen,et al.  PubChem as a Source of Polypharmacology , 2009, J. Chem. Inf. Model..

[27]  Scott Boyer,et al.  Ligand-Based Approach to In Silico Pharmacology: Nuclear Receptor Profiling , 2006, J. Chem. Inf. Model..

[28]  Bruce L. Bush,et al.  PATTY: A programmable atom type and language for automatic classification of atoms in molecular databases , 1993, J. Chem. Inf. Comput. Sci..

[29]  Pall I. Olason,et al.  A human phenome-interactome network of protein complexes implicated in genetic disorders , 2007, Nature Biotechnology.

[30]  E. Lundberg,et al.  Towards a knowledge-based Human Protein Atlas , 2010, Nature Biotechnology.

[31]  A. Barabasi,et al.  The human disease network , 2007, Proceedings of the National Academy of Sciences.

[32]  K. Shokat,et al.  Targeting the cancer kinome through polypharmacology , 2010, Nature Reviews Cancer.

[33]  Gabriele Ausiello,et al.  MINT: the Molecular INTeraction database , 2006, Nucleic Acids Res..

[34]  Adam J. Smith,et al.  The Database of Interacting Proteins: 2004 update , 2004, Nucleic Acids Res..

[35]  Ravi Iyengar,et al.  Network analyses in systems pharmacology , 2009, Bioinform..

[36]  Mark T. Drayson,et al.  SLC6A4 expression and anti-proliferative responses to serotonin transporter ligands chlomipramine and fluoxetine in primary B-cell malignancies. , 2010, Leukemia research.

[37]  Lucas Laursen Europe plans molecular screening center for translational research , 2012, Nature Medicine.

[38]  Christoph Steinbeck,et al.  Chemical Entities of Biological Interest: an update , 2009, Nucleic Acids Res..

[39]  Kiyoko F. Aoki-Kinoshita,et al.  From genomics to chemical genomics: new developments in KEGG , 2005, Nucleic Acids Res..

[40]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[41]  S. L. Wong,et al.  Towards a proteome-scale map of the human protein–protein interaction network , 2005, Nature.

[42]  F. Pontén,et al.  The Human Protein Atlas—a tool for pathology , 2008, The Journal of pathology.

[43]  Didier Rognan,et al.  Enhancing the Accuracy of Chemogenomic Models with a Three-Dimensional Binding Site Kernel , 2011, J. Chem. Inf. Model..

[44]  Pekka Tiikkainen,et al.  Analysis of Commercial and Public Bioactivity Databases , 2012, J. Chem. Inf. Model..

[45]  Thomas C. Wiegers,et al.  Comparative Toxicogenomics Database: a knowledgebase and discovery tool for chemical–gene–disease networks , 2008, Nucleic Acids Res..

[46]  Tudor I. Oprea,et al.  WOMBAT and WOMBAT‐PK: Bioactivity Databases for Lead and Drug Discovery , 2008 .

[47]  Dmitrij Frishman,et al.  The MIPS mammalian protein?Cprotein interaction database , 2005, Bioinform..

[48]  Tudor I. Oprea,et al.  Of possible cheminformatics futures , 2011, Journal of Computer-Aided Molecular Design.

[49]  K. Wanner,et al.  Methods and Principles in Medicinal Chemistry , 2007 .

[50]  Lei Xie,et al.  Structure-based systems biology for analyzing off-target binding. , 2011, Current opinion in structural biology.

[51]  Alan F. Scott,et al.  Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders , 2002, Nucleic Acids Res..

[52]  Tudor I. Oprea,et al.  iPHACE: integrative navigation in pharmacological space , 2010, Bioinform..

[53]  A. Barabasi,et al.  Drug—target network , 2007, Nature Biotechnology.

[54]  Tudor I. Oprea,et al.  Drug Repurposing from an Academic Perspective. , 2011, Drug discovery today. Therapeutic strategies.

[55]  Stuart L. Schreiber,et al.  Chemical biology : from small molecules to systems biology and drug design , 2007 .

[56]  Tsviya Olender,et al.  GeneCardsTM 2002: towards a complete, object-oriented, human gene compendium , 2002, Bioinform..

[57]  P. Willett,et al.  Promoting Access to White Rose Research Papers Similarity-based Virtual Screening Using 2d Fingerprints , 2022 .

[58]  Peter Willett,et al.  Similarity-based virtual screening using 2D fingerprints. , 2006, Drug discovery today.

[59]  Alessandro Antonelli,et al.  Cytokines (interferon-γ and tumor necrosis factor-α)-induced nuclear factor-κB activation and chemokine (C-X-C motif) ligand 10 release in Graves disease and ophthalmopathy are modulated by pioglitazone. , 2011, Metabolism: Clinical and Experimental.

[60]  James G. Nourse,et al.  Reoptimization of MDL Keys for Use in Drug Discovery , 2002, J. Chem. Inf. Comput. Sci..

[61]  Tudor I. Oprea,et al.  Linking Pharmacology to Clinical Reports: Cyclobenzaprine and Its Possible Association With Serotonin Syndrome , 2011, Clinical pharmacology and therapeutics.

[62]  Nathanael Weill,et al.  Development and Validation of a Novel Protein-Ligand Fingerprint To Mine Chemogenomic Space: Application to G Protein-Coupled Receptors and Their Ligands , 2009, J. Chem. Inf. Model..

[63]  Russ B. Altman,et al.  PharmGKB: the Pharmacogenetics Knowledge Base , 2002, Nucleic Acids Res..

[64]  Robert P. Sheridan,et al.  PATTY: A Programmable Atom Typer and Language for Automatic Classification of Atoms in Molecular Databases. , 1994 .

[65]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[66]  Lewis Y. Geer,et al.  Database resources of the National Center for Biotechnology Information , 2014, Nucleic Acids Res..

[67]  Francisco S. Roque,et al.  A large-scale analysis of tissue-specific pathology and gene expression of human disease genes and complexes , 2008, Proceedings of the National Academy of Sciences.

[68]  Roy J. Vaz,et al.  Antitargets : prediction and prevention of drug side effects , 2008 .

[69]  Michael Kuhn,et al.  Reflect: augmented browsing for the life scientist , 2009, Nature Biotechnology.

[70]  Bryan L Roth,et al.  Screening the receptorome to discover the molecular targets for plant-derived psychoactive compounds: a novel approach for CNS drug discovery. , 2004, Pharmacology & therapeutics.

[71]  Damian Szklarczyk,et al.  STITCH 2: an interaction network database for small molecules and proteins , 2009, Nucleic Acids Res..

[72]  G. V. Paolini,et al.  Global mapping of pharmacological space , 2006, Nature Biotechnology.

[73]  M. DePamphilis,et al.  HUMAN DISEASE , 1957, The Ulster Medical Journal.

[74]  David Thompson,et al.  Compound Profiling Using a Panel of Steroid Hormone Receptor Cell-Based Assays , 2008, Journal of biomolecular screening.

[75]  Emily Dimmer,et al.  The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology , 2004, Nucleic Acids Res..

[76]  Hans-Werner Mewes,et al.  MPact: the MIPS protein interaction resource on yeast , 2005, Nucleic Acids Res..

[77]  Ian M. Donaldson,et al.  BIND: the Biomolecular Interaction Network Database , 2001, Nucleic Acids Res..

[78]  David S. Wishart,et al.  DrugBank: a comprehensive resource for in silico drug discovery and exploration , 2005, Nucleic Acids Res..

[79]  T. Insel,et al.  NIH Molecular Libraries Initiative , 2004, Science.

[80]  Lincoln Stein,et al.  Reactome: a knowledgebase of biological pathways , 2004, Nucleic Acids Res..

[81]  Tudor I. Oprea,et al.  Systems Chemical Biology , 2019, Methods in Molecular Biology.

[82]  Martin Serrano,et al.  Nucleic Acids Research Advance Access published October 18, 2007 ChemBank: a small-molecule screening and , 2007 .