Bionics, an artificial imitation of natural products, has always been a forever dream in the fairy tale or scientific fiction when we were childhood and children live now. However, the development of science in molecular scale makes this dream of childhood and manhood realize today.Bionics, a branch of science concerned with application the data about the functioning of biological system to the solution of engineering problems, become top-priority of science in the 21st century.However, few examples are given in molecular-level or nano-scale controlling lotus-like surface (a bionic surface for vast potential application). In the same time, such a typical bionic surface (as well known, so called "Lotus-effect") is a symbol or a totem that scientists can develop a novel approach to prepare desired surface and to control its microstructure or morphology at one's pleasure.In general, a film with a water contact angle (CA) higher than 150° can be defined as a superhydrophobic surface. The Langmuir-Blodgett film prepared by using CF3(CF2)10COOH possesses the lowest surface tension, which is 6 mJ/m2 (1). However, the water CA on a smooth surface with regularly aligned C20F42 with close-hexagonal packed -CF3 groups is only 119° (2).Obviously, only adjusting chemical composition is not enough to produce a superhydrophobic surface. Wenzel et al (3) suggested that the contact angle θ' of a liquid droplet on a rough solid surface should be written as:cosθ, =γcosθ = γ(γs-γsl)/γl, here γ is a roughness factor and γsl, γs and γl denote the interfacial tensions of the solid-liquid, the solid-gas, and the liquid-gas interfaces,respectively. This γ is always larger than 1 and a rough surface will be more water-repellent or more wettable to a liquid when intrinsic contact angle θ is bigger or smaller than 90°, respectively.Therefore, a general approach to obtain superhydrophobic surfaces is using a combination of depressing surface energy and enhancing surface roughness (4-17).Super-hydrophobic polymeric surface ha