On the design of 1–3 piezocomposites using topology optimization

We use a topology optimization method to design 1–3 piezocomposites with optimal performance characteristics for hydrophone applications. The performance characteristics we focus on are the hydrostatic charge coefficient , the hydrophone figure of merit , and the electromechanical coupling factor . The piezocomposite consists of piezoelectric rods embedded in an optimal polymer matrix. We use the topology optimization method to design the optimal (porous) matrix microstructure. When we design for maximum and , the optimal transversally isotopic matrix material has negative Poisson's ratio in certain directions. When we design for maximum , the optimal matrix microstructure is layered and simple to build.

[1]  O. Sigmund Tailoring materials with prescribed elastic properties , 1995 .

[2]  K. Schittkowski,et al.  Numerical comparison of nonlinear programming algorithms for structural optimization , 1994 .

[3]  J. V. Biggers,et al.  Composites of PZT and Epoxy for Hydrostatic Transducer Applications , 1981 .

[4]  W. A. Smith,et al.  Evaluation of the properties of 1-3 piezocomposites of a new lead titanate in epoxy resins , 1992 .

[5]  Ole Sigmund,et al.  On the Design of Compliant Mechanisms Using Topology Optimization , 1997 .

[6]  David C. Wilson,et al.  Mathematical Methods in Medical Imaging III: 25-26 July, 1994, San Diego, California , 1994 .

[7]  Robert V. Kohn,et al.  Microstructures minimizing the energy of a two phase elastic composite in two space dimensions. , 1995 .

[8]  Alexander G. Kolpakov,et al.  Determination of the average characteristics of elastic frameworks , 1985 .

[9]  Paul F. Jacobs,et al.  Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography , 1992 .

[10]  N. Kikuchi,et al.  Preprocessing and postprocessing for materials based on the homogenization method with adaptive fini , 1990 .

[11]  G. Milton,et al.  Which Elasticity Tensors are Realizable , 1995 .

[12]  Proceedings of IEEE Ultrasonics Symposium , 1994, 1994 Proceedings of IEEE Ultrasonics Symposium.

[13]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[14]  J. Unsworth,et al.  Simple model for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer applications , 1989 .

[15]  S. Torquato,et al.  Composites with extremal thermal expansion coefficients , 1996 .

[16]  C. S. Jog,et al.  Stability of finite element models for distributed-parameter optimization and topology design , 1996 .

[17]  O. Sigmund,et al.  Checkerboard patterns in layout optimization , 1995 .

[18]  O. Sigmund Materials with prescribed constitutive parameters: An inverse homogenization problem , 1994 .

[19]  S. Torquato,et al.  Design of materials with extreme thermal expansion using a three-phase topology optimization method , 1997 .

[20]  O. Sigmund,et al.  Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio , 1996, Proceedings of Ninth International Workshop on Micro Electromechanical Systems.

[21]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .