Stable Interval Observers in BBC for Linear Systems With Time-Varying Input Bounds

This technical note deals with the design of stable interval observers and estimators for continuous-time linear dynamic systems under uncertain initial states and uncertain inputs enclosed within time-varying zonotopic bounds. No monotony assumption such as cooperativity is required in the vector field: the interval observer stability directly derives from the stability of the observer state matrix, where any poles (real or complex, single or multiple) are handled in the same way.

[1]  Max b. Müller Über das Fundamentaltheorem in der Theorie der gewöhnlichen Differentialgleichungen , 1927 .

[2]  Xiaofeng Wang,et al.  Self-Triggering Under State-Independent Disturbances , 2010, IEEE Transactions on Automatic Control.

[3]  Alessandro Astolfi,et al.  Homogeneous Approximation, Recursive Observer Design, and Output Feedback , 2008, SIAM J. Control. Optim..

[4]  Paulo Tabuada,et al.  Event-Triggered Real-Time Scheduling of Stabilizing Control Tasks , 2007, IEEE Transactions on Automatic Control.

[5]  Jan Lunze,et al.  A state-feedback approach to event-based control , 2010, Autom..

[6]  Richard H. Middleton,et al.  Networked control design for linear systems , 2003, Autom..

[7]  Huijun Gao,et al.  Stabilization of Networked Control Systems With a New Delay Characterization , 2008, IEEE Transactions on Automatic Control.

[8]  Xiaofeng Wang,et al.  Preliminary results on state-trigered scheduling of stabilizing control tasks , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[9]  João Pedro Hespanha,et al.  A Survey of Recent Results in Networked Control Systems , 2007, Proceedings of the IEEE.

[10]  Wei Zhang,et al.  Stability of networked control systems , 2001 .

[11]  Fuwen Yang,et al.  Robust $H_{\infty}$ Control for Networked Systems With Random Packet Losses , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[12]  Pravin Varaiya,et al.  Ellipsoidal Techniques for Reachability Analysis of Discrete-Time Linear Systems , 2007, IEEE Transactions on Automatic Control.

[13]  Biao Huang,et al.  A new method for stabilization of networked control systems with random delays , 2005, Proceedings of the 2005, American Control Conference, 2005..

[14]  Rudolf J. Lohner,et al.  On the Ubiquity of the Wrapping Effect in the Computation of Error Bounds , 2001, Perspectives on Enclosure Methods.

[15]  Nacim Meslem,et al.  A Hybrid Bounding Method for Computing an Over-Approximation for the Reachable Set of Uncertain Nonlinear Systems , 2009, IEEE Transactions on Automatic Control.

[16]  Olivier Bernard,et al.  Asymptotically Stable Interval Observers for Planar Systems With Complex Poles , 2010, IEEE Transactions on Automatic Control.

[17]  Hal L. Smith,et al.  Monotone Dynamical Systems: An Introduction To The Theory Of Competitive And Cooperative Systems (Mathematical Surveys And Monographs) By Hal L. Smith , 1995 .

[18]  Nacim Ramdani,et al.  Complex Interval Arithmetic Using Polar Form , 2006, Reliab. Comput..

[19]  Siegfried M. Rump,et al.  On Eigenvector Bounds , 2003 .

[20]  Jean-Luc Gouzé,et al.  Near optimal interval observers bundle for uncertain bioreactors , 2007 .

[21]  Lui Sha,et al.  On task schedulability in real-time control systems , 1996, 17th IEEE Real-Time Systems Symposium.

[22]  Behçet Açikmese,et al.  Observers for systems with nonlinearities satisfying incremental quadratic constraints , 2011, Autom..

[23]  Manuel Mazo,et al.  An ISS self-triggered implementation of linear controllers , 2009, Autom..

[24]  Christophe Combastel,et al.  A Stable Interval Observer for LTI Systems with No Multiple Poles , 2011 .

[25]  Denis V. Efimov,et al.  Interval State Estimation for a Class of Nonlinear Systems , 2012, IEEE Transactions on Automatic Control.

[26]  C. Combastel,et al.  A stable interval observer for fault detection in the context of verified model-based design , 2010, 2010 Conference on Control and Fault-Tolerant Systems (SysTol).

[27]  A. Girard,et al.  Efficient reachability analysis for linear systems using support functions , 2008 .

[28]  C. Combastel A State Bounding Observer for Uncertain Non-linear Continuous-time Systems based on Zonotopes , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[29]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[30]  J. Gouzé,et al.  Interval observers for uncertain biological systems , 2000 .

[31]  Murat Arcak,et al.  A relaxed condition for stability of nonlinear observer-based controllers , 2004, Syst. Control. Lett..

[32]  Qing-Long Han,et al.  A discrete delay decomposition approach to stability of linear retarded and neutral systems , 2009, Autom..

[33]  Q. Han,et al.  State feedback controller design of networked control systems , 2004 .

[34]  Dong Yue,et al.  Network-based robust H ∞ control of systemswith uncertainty , 2005 .

[35]  Dong Yue,et al.  A delay system method to design of event-triggered control of networked control systems , 2011, IEEE Conference on Decision and Control and European Control Conference.

[36]  Gene H. Golub,et al.  Ill-conditioned eigensystems and the computation of the Jordan canonical form , 1975, Milestones in Matrix Computation.

[37]  Huaguang Zhang,et al.  Guaranteed Cost Networked Control for T–S Fuzzy Systems With Time Delays , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[38]  Xiaofeng Wang,et al.  Event-Triggering in Distributed Networked Systems with Data Dropouts and Delays , 2009, HSCC.

[39]  Olivier Bernard,et al.  Interval observers for linear time-invariant systems with disturbances , 2011, Autom..