Secret Sharing Schemes with Bipartite Access Structure

We study the information rate of secret sharing schemes whose access structure is bipartite. In a bipartite access structure there are two classes of participants and all participants in the same class play an equivalent role in the structure. We characterize completely the bipartite access structures that can be realized by an ideal secret sharing scheme. Both upper and lower bounds on the optimal information rate of bipartite access structures are given.

[1]  G. R. BLAKLEY Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[2]  Douglas R. Stinson,et al.  An explication of secret sharing schemes , 1992, Des. Codes Cryptogr..

[3]  Alfredo De Santis,et al.  On the Information Rate of Secret Sharing Schemes , 1996, Theor. Comput. Sci..

[4]  Alfredo De Santis,et al.  On the Size of Shares for Secret Sharing Schemes , 1991, CRYPTO.

[5]  Ernest F. Brickell,et al.  Some Ideal Secret Sharing Schemes , 1990, EUROCRYPT.

[6]  Alfredo De Santis,et al.  Tight Bounds on the Information Rate of Secret Sharing Schemes , 1997, Des. Codes Cryptogr..

[7]  Alfredo De Santis,et al.  On the Information Rate of Secret Sharing Schemes (Extended Abstract) , 1992, CRYPTO.

[8]  Albrecht Beutelspacher,et al.  On 2-level secret sharing , 1993, Des. Codes Cryptogr..

[9]  Douglas R. Stinson,et al.  Decomposition constructions for secret-sharing schemes , 1994, IEEE Trans. Inf. Theory.

[10]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[11]  Ehud D. Karnin,et al.  On secret sharing systems , 1983, IEEE Trans. Inf. Theory.

[12]  Douglas R. Stinson,et al.  Cryptography: Theory and Practice , 1995 .