Sustained mechanical self-oscillations in carbon nanotubes.

The potential size and power benefits of resonant NEMS devices are frequently mitigated by the need for relatively large, high-frequency, high-power electronics. Here we demonstrate controllable, sustained self-oscillations in singly clamped carbon nanotubes operating with a single dc voltage supply, and we develop a model that predicts the required voltage on the basis of the material properties and device geometry. Using this model, we demonstrate for the first time top-down, self-oscillating NEMS devices suitable for large-scale integration.