CV-MDI-QKD with coherent state: beyond one-mode Gaussian attacks

[1]  Umesh Vazirani,et al.  Fully device-independent quantum key distribution. , 2012, 1210.1810.

[2]  Stefano Pirandola,et al.  General immunity and superadditivity of two-way Gaussian quantum cryptography , 2016, Scientific Reports.

[3]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[4]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[5]  Stefano Pirandola,et al.  Gaussian two-mode attacks in one-way quantum cryptography , 2017 .

[6]  Stefano Pirandola,et al.  Two-way quantum cryptography at different wavelengths , 2013, 1309.7973.

[7]  Seth Lloyd,et al.  Correlation matrices of two-mode bosonic systems , 2009, 0902.1502.

[8]  Sébastien Kunz-Jacques,et al.  Long Distance Continuous-Variable Quantum Key Distribution with a Gaussian Modulation , 2011, Physical Review A.

[9]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[10]  Eleni Diamanti,et al.  Experimental demonstration of long-distance continuous-variable quantum key distribution , 2012, Nature Photonics.

[11]  Xiang Peng,et al.  Continuous-variable measurement-device-independent quantum key distribution with imperfect detectors , 2013, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[12]  Stefano Mancini,et al.  Two-way Gaussian quantum cryptography against coherent attacks in direct reconciliation , 2015 .

[13]  Romain Alléaume,et al.  Multidimensional reconciliation for continuous-variable quantum key distribution , 2007, 2008 IEEE International Symposium on Information Theory.

[14]  Samuel L. Braunstein,et al.  Continuous-variable quantum cryptography with an untrusted relay: Detailed security analysis of the symmetric configuration , 2015, 1506.05430.

[15]  Yi-Chen Zhang,et al.  Continuous-Variable Quantum Key Distribution with Rateless Reconciliation Protocol , 2019, Physical Review Applied.

[16]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[17]  L. Banchi,et al.  Fundamental limits of repeaterless quantum communications , 2015, Nature Communications.

[18]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[19]  Stefano Pirandola,et al.  Entanglement reactivation in separable environments , 2012, 1210.2119.

[20]  Vladyslav C. Usenko,et al.  Trusted Noise in Continuous-Variable Quantum Key Distribution: A Threat and a Defense , 2016, Entropy.

[21]  Stefano Pirandola,et al.  High-rate measurement-device-independent quantum cryptography , 2013, Nature Photonics.

[22]  Seth Lloyd,et al.  Direct and reverse secret-key capacities of a quantum channel. , 2008, Physical review letters.

[23]  Wanyi Gu,et al.  Continuous-variable measurement-device-independent quantum key distribution using squeezed states , 2014, 1406.0973.

[24]  Roger Colbeck Victory for the Quantum Code Maker , 2014 .

[25]  Samuel L. Braunstein,et al.  Theory of channel simulation and bounds for private communication , 2017, Quantum Science and Technology.

[26]  Stefano Pirandola,et al.  Side-channel-free quantum key distribution. , 2011, Physical review letters.

[27]  Wee Ser,et al.  An integrated silicon photonic chip platform for continuous-variable quantum key distribution , 2019, Nature Photonics.

[28]  Eleni Diamanti,et al.  Distributing Secret Keys with Quantum Continuous Variables: Principle, Security and Implementations , 2015, Entropy.

[29]  Hong Guo,et al.  Long-distance continuous-variable quantum key distribution over 202.81 km fiber , 2020, 2001.02555.

[30]  Timothy C. Ralph,et al.  A bright future for quantum communications , 2009 .

[31]  S. Lloyd,et al.  Reply to 'Discrete and continuous variables for measurement-device-independent quantum cryptography' , 2015 .