Symmetry breaking in nanostructure development of carbogenic molecular sieves: Effects of morphological pattern formation on oxygen and nitrogen transport
暂无分享,去创建一个
A comprehensive study has been undertaken to establish the primary factors that control transport of oxygen and nitrogen in polymer-derived carbogenic molecular sieves (CMS). Characterization of the nanostructure of CMS derived from poly(furfuryl alcohol) (PFA) indicates that significant physical and chemical reorganization occurs as a function of synthesis temperature. Spectroscopic measurements show a drastic decrease in oxygen and hydrogen functionality with increasing pyrolysis temperature. Structural reorganization and elimination of these heteroatoms lead to a measurable increase in the unpaired electron density in these materials. High-resolution transmission electron microscopy and powder neutron diffraction are used to probe the corresponding changes in the physical structural features in the CMS. These indicate that as the pyrolysis temperature is increased, the structure of the CMS transforms from one that is disordered and therefore highly symmetric to one that is more ordered on a length scal...