Boundary Mittag-Leffler stabilization of coupled time fractional order reaction-advection-diffusion systems with non-constant coefficients

[1]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[2]  Andrey Polyakov,et al.  Boundary time-varying feedbacks for fixed-time stabilization of constant-parameter reaction-diffusion systems , 2019, Autom..

[3]  Manuel A. Duarte-Mermoud,et al.  Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems , 2015, Commun. Nonlinear Sci. Numer. Simul..

[4]  Joachim Deutscher,et al.  Backstepping Control of Coupled Linear Parabolic PIDEs With Spatially Varying Coefficients , 2017, IEEE Transactions on Automatic Control.

[5]  Yury Orlov,et al.  Boundary control of coupled reaction-diffusion processes with constant parameters , 2015, Autom..

[6]  YangQuan Chen,et al.  Boundary feedback stabilisation for the time fractional-order anomalous diffusion system , 2016 .

[7]  Yong Zhou,et al.  Nonlocal Cauchy problem for fractional evolution equations , 2010 .

[8]  Xinlong Feng,et al.  A compact integrated RBF method for time fractional convection-diffusion-reaction equations , 2019, Comput. Math. Appl..

[9]  Andrey G. Cherstvy,et al.  Particle invasion, survival, and non-ergodicity in 2D diffusion processes with space-dependent diffusivity. , 2013, Soft matter.

[10]  Prasad K. Yarlagadda,et al.  Time‐dependent fractional advection–diffusion equations by an implicit MLS meshless method , 2011 .

[11]  Miroslav Krstic,et al.  Stability of partial difference equations governing control gains in infinite-dimensional backstepping , 2004, Syst. Control. Lett..

[12]  Mark J. Ablowitz,et al.  Solitary wave collisions , 1979 .

[13]  Y. Chen,et al.  Backstepping-based boundary control design for a fractional reaction diffusion system with a space-dependent diffusion coefficient. , 2018, ISA transactions.

[14]  Andreas Kugi,et al.  Tracking control for boundary controlled parabolic PDEs with varying parameters: Combining backstepping and differential flatness , 2009, Autom..

[15]  Miroslav Krstic,et al.  Closed-form boundary State feedbacks for a class of 1-D partial integro-differential equations , 2004, IEEE Transactions on Automatic Control.

[16]  Miroslav Krstic,et al.  On control design for PDEs with space-dependent diffusivity or time-dependent reactivity , 2005, Autom..

[17]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[18]  K. Miller,et al.  Completely monotonic functions , 2001 .

[19]  Changpin Li,et al.  A survey on the stability of fractional differential equations , 2011 .

[20]  Miroslav Krstic,et al.  Compensating actuator and sensor dynamics governed by diffusion PDEs , 2009, Syst. Control. Lett..

[21]  Antony Jameson,et al.  Solution of the Equation $AX + XB = C$ by Inversion of an $M \times M$ or $N \times N$ Matrix , 1968 .

[22]  YangQuan Chen,et al.  Mittag‐Leffler stabilization for an unstable time‐fractional anomalous diffusion equation with boundary control matched disturbance , 2019, International Journal of Robust and Nonlinear Control.

[23]  Qunxiong Zhu,et al.  Computational optimal control for the time fractional convection-diffusion-reaction system , 2017, Cluster Computing.

[24]  V. V. Gafiychuk,et al.  Pattern formation in a fractional reaction diffusion system , 2006 .

[25]  Lei Ren,et al.  Efficient compact finite difference methods for a class of time-fractional convection–reaction–diffusion equations with variable coefficients , 2019, Int. J. Comput. Math..

[26]  Yangquan Chen,et al.  Computers and Mathematics with Applications Stability of Fractional-order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag–leffler Stability , 2022 .

[27]  Bao-Zhu Guo,et al.  Boundary Feedback Stabilization for an Unstable Time Fractional Reaction Diffusion Equation , 2018, SIAM J. Control. Optim..

[28]  Eduard Petlenkov,et al.  Stabilization and Stability Robustness of Coupled Non-Constant Parameter Time Fractional PDEs , 2019, IEEE Access.

[29]  Miroslav Krstic,et al.  Boundary Control of Coupled Reaction-Advection-Diffusion Systems With Spatially-Varying Coefficients , 2016, IEEE Transactions on Automatic Control.

[30]  Changpin Li,et al.  High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (III) , 2016, J. Comput. Appl. Math..

[31]  Yangquan Chen,et al.  Mittag-Leffler convergent backstepping observers for coupled semilinear subdiffusion systems with spatially varying parameters , 2018, Syst. Control. Lett..

[32]  Miroslav Krstic,et al.  Control of Homodirectional and General Heterodirectional Linear Coupled Hyperbolic PDEs , 2015, IEEE Transactions on Automatic Control.

[33]  Vladimir V. Uchaikin,et al.  Fractional theory for transport in disordered semiconductors , 2008 .

[34]  Mingrong Cui,et al.  Compact exponential scheme for the time fractional convection-diffusion reaction equation with variable coefficients , 2015, J. Comput. Phys..

[35]  Miroslav Krstic,et al.  Boundary Exponential Stabilization of 1-Dimensional Inhomogeneous Quasi-Linear Hyperbolic Systems , 2019, SIAM J. Control. Optim..

[36]  D. Benson,et al.  Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications , 2009 .