A 200 mW, 1 Msample/s, 16-b pipelined A/D converter with on-chip 32-b microcontroller

This paper describes the design and implementation of a fully monolithic 16-b, 1 Msample/s, low-power A/D converter (ADC). An on-chip 32-b custom microcontroller calibrates and corrects the pipeline linearity to within 0.75 LSB integral nonlinearity (INL) and 0.6 LSB differential nonlinearity (DNL). High speed and low power are achieved using a pipelined architecture. Errors resulting from capacitor mismatches, finite op-amp open loop gain, charge injection and comparator offset are removed through self-calibration. Coefficients determined during calibration are stored on chip, digitally correcting the pipeline ADC in real time during normal conversion, Full-scale errors are removed through self-calibration and an-chip multiplication. Linearity errors due to capacitor voltage coefficients are reduced using a curve fit algorithm and on-chip ROM. Digital cross-talk errors resulting from the microcontroller running at a rate of ten times the analog sampling rate have prevented implementations of fully monolithic converters of this performance class in the past. Mismatches in cross-talk due to different digital timing between calibration and correction lead to linearity errors at critical correction points. Experimental analysis and circuit techniques which overcome these problems are presented.