A Detector-Based Approach for the Constrained Quadratic Control of Discrete-Time Markovian Jump Linear Systems

This paper considers the quadratic control problem of discrete-time Markov jump linear systems with constraints on the norm of the state and control variables. We assume that the Markov chain parameter is not available, and instead, there is a detector, which emits signals providing information on this parameter. It is desired to derive a feedback linear control using the information provided by this detector in order to stochastically stabilize the closed-loop system, satisfy the constraints whenever the initial conditions belong to an invariant set, and minimize an upper bound for the quadratic cost. We show that a linear matrix inequality (LMI) optimization problem can be formulated in order to obtain a solution for this problem. Two other related problems, one for minimizing the guaranteed quadratic cost considering fixed initial conditions and the other for maximizing an estimate of the domain of an invariant set, can also be formulated using our LMI approach. This paper is concluded with some numerical simulations.

[1]  D. Sworder,et al.  Feedback control of a class of linear discrete systems with jump parameters and quadratic cost criteria , 1975 .

[2]  M. Mariton Detection delays, false alarm rates and the reconfiguration of control systems , 1989 .

[3]  Oscar R. González,et al.  Stability analysis of digital linear flight controllers subject to electromagnetic disturbances , 2000, IEEE Trans. Aerosp. Electron. Syst..

[4]  El-Kébir Boukas,et al.  Stochastic Switching Systems: Analysis and Design , 2005 .

[5]  Dewei Li,et al.  Constrained model predictive control synthesis for uncertain discrete-time Markovian jump linear systems , 2013 .

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  John Lygeros,et al.  Convexity and convex approximations of discrete-time stochastic control problems with constraints , 2011, Autom..

[8]  Oswaldo Luiz do Valle Costa,et al.  H∞-filtering for Markov jump linear systems with partial information on the jump parameter , 2017, IFAC J. Syst. Control..

[9]  Marcelo D. Fragoso,et al.  Detector-based H∞ results for discrete-time Markov jump linear systems with partial observations , 2018, Autom..

[10]  Sheldon M. Ross,et al.  Introduction to probability models , 1975 .

[11]  Oswaldo Luiz do Valle Costa,et al.  Constrained quadratic state feedback control of discrete-time Markovian jump linear systems , 1999, Autom..

[12]  Alberto Bemporad,et al.  Stochastic model predictive control for constrained discrete-time Markovian switching systems , 2014, Autom..

[13]  Alessandro N. Vargas,et al.  Second moment constraints and the control problem of Markov jump linear systems , 2013, Numer. Linear Algebra Appl..

[14]  Olaf Stursberg,et al.  Constraint robust model predictive control for jump Markov linear systems with additive disturbances , 2016, 2016 European Control Conference (ECC).

[15]  Marcelo D. Fragoso,et al.  A Detector-Based Approach for the $H_{2} $ Control of Markov Jump Linear Systems With Partial Information , 2015, IEEE Transactions on Automatic Control.

[16]  Alessandro N. Vargas,et al.  Constrained model predictive control of jump linear systems with noise and non-observed Markov state , 2006, 2006 American Control Conference.

[17]  O. L. V. Costa,et al.  $H_2$-Control of Continuous-Time Hidden Markov Jump Linear Systems , 2017, IEEE Transactions on Automatic Control.

[18]  M. Fragoso,et al.  Continuous-Time Markov Jump Linear Systems , 2012 .

[19]  J. D. Val,et al.  A Convex Programming Approach to the H 2 -Control of Discrete-Time Markovian Jump Linear Systems , 1995 .

[20]  Pei-Ju Liao,et al.  Macroeconomic Theory I , 2012 .

[21]  Michael O. Kolawole,et al.  Estimation and tracking , 2002 .

[22]  R. Rogers,et al.  An LQ-solution to a control problem associated with a solar thermal central receiver , 1983 .

[23]  Marco H. Terra,et al.  Nonlinear and Markovian H∞ controls of underactuated manipulators , 2004, IEEE Trans. Control. Syst. Technol..

[24]  L. Ghaoui,et al.  Robust state-feedback stabilization of jump linear systems , 1996 .

[25]  R. Srichander,et al.  Stochastic Stability Analysis for Continuous Time Fault Tolerant Control Systems , 1991, 1991 American Control Conference.

[26]  R. P. Marques,et al.  Discrete-Time Markov Jump Linear Systems , 2004, IEEE Transactions on Automatic Control.

[27]  M. Kothare,et al.  Robust constrained model predictive control using linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[28]  F. Westerhoff Samuelson's multiplier–accelerator model revisited , 2006 .

[29]  Thomas Frei,et al.  Active Fault Tolerant Control Systems Stochastic Analysis And Synthesis , 2016 .

[30]  Marcelo D. Fragoso,et al.  H∞ control of continuous-time Markov jump linear systems with detector-based mode information† , 2017, Int. J. Control.

[31]  L. Baum,et al.  A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .

[32]  W. Marsden I and J , 2012 .

[33]  WILLIAM P. BLAIR,et al.  Continuous-Time Regulation of a Class of Econometric Models , 1975, IEEE Transactions on Systems, Man, and Cybernetics.

[34]  M. Mariton,et al.  Jump Linear Systems in Automatic Control , 1992 .

[35]  Marcelo D. Fragoso,et al.  H∞ filtering for markovian jump linear systems with mode partial information , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[36]  Asok Ray,et al.  Mathematical Methods in Robust Control of Linear Stochastic Systems (Mathematical Concepts and Methods in Science and Engineering Series) (by Y. Dragan et al.; 2006) [Book reviews] , 2008, IEEE Transactions on Automatic Control.

[37]  André Marcorin de Oliveira,et al.  -Filtering for discrete-time hidden Markov jump systems , 2017, Int. J. Control.

[38]  Paul A. Samuelson,et al.  Interactions Between The Multiplier Analysis And The Principle Of Acceleration , 1939 .