Cyclic sieving, promotion, and representation theory

We prove a collection of conjectures of White [D. White, personal communication, 2007], as well as some related conjectures of Abuzzahab, Korson, Li, and Meyer [O. Abuzzahab, M. Korson, M. Li, S. Meyer, Cyclic and dihedral sieving for plane partitions, U. Minnesota REU Report, 2005] and of Reiner and White [V. Reiner, personal communication, 2007; D. White, personal communication, 2007], regarding the cyclic sieving phenomenon of Reiner, Stanton and White [V. Reiner, D. Stanton, D. White, The cyclic sieving phenomenon, J. Combin. Theory Ser. A 108 (2004)] as it applies to jeu-de-taquin promotion on rectangular tableaux. To do this, we use Kazhdan-Lusztig theory and a characterization of the dual canonical basis of C[x"1"1,...,x"n"n] due to Skandera [M. Skandera, On the dual canonical and Kazhdan-Lusztig bases and 3412, 4231-avoiding permutations, 2006, submitted for publication]. Afterwards, we extend our results to analyzing the fixed points of a dihedral action on rectangular tableaux generated by promotion and evacuation, suggesting a possible sieving phenomenon for dihedral groups. Finally, we give applications of this theory to cyclic sieving phenomena involving reduced words for the long elements of hyperoctohedral groups and noncrossing partitions.

[1]  Andrei Zelevinsky,et al.  Canonical bases for the quantum group of type $A_r$ and piecewise-linear combinatorics , 1996 .

[2]  Dennis E. White,et al.  A Schensted Algorithm for Rim Hook Tableaux , 1985, J. Comb. Theory, Ser. A.

[3]  Francesco Brenti Combinatorial Expansions of Kazhdan–Lusztig Polynomials , 1997 .

[4]  Victor Reiner,et al.  Cyclic Sieving of Noncrossing Partitions for Complex Reflection Groups , 2007 .

[5]  T. A. Springer Regular elements of finite reflection groups , 1974 .

[6]  Pavlo Pylyavskyy,et al.  A2-web immanants , 2010, Discret. Math..

[7]  John R. Stembridge,et al.  Canonical bases and self-evacuating tableaux , 1996 .

[8]  B. Rhoades,et al.  Kazhdan–Lusztig immanants and products of matrix minors, II , 2010 .

[9]  John R. Stembridge,et al.  Immanants of Totally Positive Matrices are Nonnegative , 1991 .

[10]  Bruce E. Sagan Shifted tableaux, schur Q-functions, and a conjecture of R. Stanley , 1987, J. Comb. Theory, Ser. A.

[11]  Mark D. Haiman,et al.  Dual equivalence with applications, including a conjecture of Proctor , 1992, Discret. Math..

[12]  B. Sagan The Symmetric Group , 2001 .

[13]  R. Stanley Enumerative Combinatorics: Volume 1 , 2011 .

[14]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[15]  Müge Taskin Properties of four partial orders on standard Young tableaux , 2006, J. Comb. Theory, Ser. A.

[16]  B. Rhoades,et al.  Kazhdan–Lusztig immanants and products of matrix minors , 2006 .

[17]  Gregory S. Warrington,et al.  Kazhdan-Lusztig Polynomials for 321-Hexagon-Avoiding Permutations , 2000 .

[18]  Anne Schilling,et al.  On the uniqueness of promotion operators on tensor products of type A crystals , 2010 .

[19]  A. Björner,et al.  Combinatorics of Coxeter Groups , 2005 .

[20]  V. Reiner,et al.  Bimahonian distributions , 2007, math/0703479.

[21]  Victor Reiner,et al.  The cyclic sieving phenomenon , 2004, J. Comb. Theory A.

[22]  J. Shaw Combinatory Analysis , 1917, Nature.

[23]  R. Brylinski Limits of weight spaces, Lusztig’s $q$-analogs, and fiberings of adjoint orbits , 1989 .

[24]  Mark D. Haiman On mixed insertion, symmetry, and shifted young tableaux , 1989, J. Comb. Theory, Ser. A.

[25]  Adriano M. Garsia,et al.  Relations between Young's natural and the Kazhdan-Lusztig representations of Sn , 1988 .

[26]  Marcos Skandera On the dual canonical and Kazhdan-Lusztig bases and 3412-, 4231-avoiding permutations , 2008 .

[27]  Mark Haiman,et al.  Hecke algebra characters and immanant conjectures , 1993 .

[28]  Francesco Brenti A combinatorial formula for Kazhdan-Lusztig polynomials , 1994 .

[29]  Dale Raymond Worley,et al.  A theory of shifted Young tableaux , 1984 .

[30]  A. Joseph,et al.  On the Brylinski-Kostant filtration , 2000 .

[31]  Richard P. Stanley,et al.  Invariants of finite groups and their applications to combinatorics , 1979 .

[32]  Germain Kreweras,et al.  Sur les partitions non croisees d'un cycle , 1972, Discret. Math..

[33]  Alain Lascoux,et al.  Green Polynomials and Hall-Littlewood Functions at Roots of Unity , 1994, Eur. J. Comb..

[34]  T. Inui,et al.  The Symmetric Group , 1990 .

[35]  D. Kazhdan,et al.  Representations of Coxeter groups and Hecke algebras , 1979 .

[36]  Francesco Brenti,et al.  Combinatorial Properties of the Kazhdan–LusztigR-Polynomials forSn , 1997 .

[37]  J. S. Frame,et al.  The Hook Graphs of the Symmetric Group , 1954, Canadian Journal of Mathematics.

[38]  Richard P. Stanley,et al.  Promotion and Evacuation , 2008, Electron. J. Comb..

[39]  Jie Du,et al.  Canonical bases for irreducible representations of quantum GLn , 1992 .

[40]  John R. Stembridge,et al.  On minuscule representations, plane partitions and involutions in complex Lie groups , 1994 .

[41]  B. Rhoades,et al.  Temperley-Lieb Immanants , 2005 .

[42]  George Lusztig,et al.  Canonical bases arising from quantized enveloping algebras , 1990 .