Rate-cost tradeoffs in control

Consider a distributed control problem with a communication channel connecting the observer of a linear stochastic system to the controller. The goal of the controller is minimize a quadratic cost function. The most basic special case of that cost function is the mean-square deviation of the system state from the desired state. We study the fundamental tradeoff between the communication rate r bits/sec and the limsup of the expected cost b, and show a lower bound on the rate necessary to attain b. The bound applies as long as the system noise has a probability density function. If target cost b is not too large, that bound can be closely approached by a simple lattice quantization scheme that only quantizes the innovation, that is, the difference between the controller's belief about the current state and the true state.

[1]  Thomas M. Cover,et al.  Elements of information theory (2. ed.) , 2006 .

[2]  Tamás Linder,et al.  Asymptotic entropy-constrained performance of tessellating and universal randomized lattice quantization , 1994, IEEE Trans. Inf. Theory.

[3]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[4]  Milan S. Derpich,et al.  Improved Upper Bounds to the Causal Quadratic Rate-Distortion Function for Gaussian Stationary Sources , 2012, IEEE Transactions on Information Theory.

[5]  Pablo A. Parrilo,et al.  Semidefinite Programming Approach to Gaussian Sequential Rate-Distortion Trade-Offs , 2014, IEEE Transactions on Automatic Control.

[6]  George Gabor,et al.  Recursive source coding - a theory for the practice of waveform coding , 1986 .

[7]  Wing Shing Wong,et al.  Systems with finite communication bandwidth constraints. II. Stabilization with limited information feedback , 1999, IEEE Trans. Autom. Control..

[8]  Jacob Ziv,et al.  On universal quantization , 1985, IEEE Trans. Inf. Theory.

[9]  Gerhard Kramer,et al.  Directed information for channels with feedback , 1998 .

[10]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[11]  Nasir Uddin Ahmed,et al.  Nonanticipative Rate Distortion Function and Relations to Filtering Theory , 2012, IEEE Transactions on Automatic Control.

[12]  J. Massey CAUSALITY, FEEDBACK AND DIRECTED INFORMATION , 1990 .

[13]  Gábor Fejes Tóth,et al.  Packing and Covering , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[14]  Sekhar Tatikonda,et al.  Control under communication constraints , 2004, IEEE Transactions on Automatic Control.

[15]  Yihong Wu,et al.  Wasserstein Continuity of Entropy and Outer Bounds for Interference Channels , 2015, IEEE Transactions on Information Theory.

[16]  Charalambos D. Charalambous,et al.  LQG optimality and separation principle for general discrete time partially observed stochastic systems over finite capacity communication channels , 2008, Autom..

[17]  Jean C. Walrand,et al.  Optimal causal coding - decoding problems , 1983, IEEE Trans. Inf. Theory.

[18]  Michael Gastpar,et al.  To code, or not to code: lossy source-channel communication revisited , 2003, IEEE Trans. Inf. Theory.

[19]  Herbert Gish,et al.  Asymptotically efficient quantizing , 1968, IEEE Trans. Inf. Theory.

[20]  C. A. Rogers,et al.  Packing and Covering , 1964 .

[21]  Sergio Verdu,et al.  Lossy Joint Source-Channel Coding in the Finite Blocklength Regime , 2013, IEEE Trans. Inf. Theory.

[22]  Sekhar Tatikonda,et al.  Control over noisy channels , 2004, IEEE Transactions on Automatic Control.

[23]  Jack K. Wolf,et al.  Transmission of noisy information to a noisy receiver with minimum distortion , 1970, IEEE Trans. Inf. Theory.

[24]  Milan S. Derpich,et al.  A Characterization of the Minimal Average Data Rate That Guarantees a Given Closed-Loop Performance Level , 2014, IEEE Transactions on Automatic Control.

[25]  Tamer Basar,et al.  Minimum Rate Coding for LTI Systems Over Noiseless Channels , 2006, IEEE Transactions on Automatic Control.

[26]  Karl Henrik Johansson,et al.  Separated Design of Encoder and Controller for Networked Linear Quadratic Optimal Control , 2016, SIAM J. Control. Optim..

[27]  Takashi Tanaka,et al.  LQG Control With Minimum Directed Information: Semidefinite Programming Approach , 2015, IEEE Transactions on Automatic Control.

[28]  V. Borkar,et al.  LQG Control with Communication Constraints , 1997 .

[29]  Sekhar Tatikonda,et al.  The Capacity of Channels With Feedback , 2006, IEEE Transactions on Information Theory.

[30]  John Baillieul,et al.  Feedback Designs for Controlling Device Arrays with Communication Channel Bandwidth Constraints , 1999 .

[31]  Fuzhen Zhang Matrix Theory: Basic Results and Techniques , 1999 .

[32]  Allen Gersho,et al.  Asymptotically optimal block quantization , 1979, IEEE Trans. Inf. Theory.

[33]  H. Witsenhausen On the structure of real-time source coders , 1979, The Bell System Technical Journal.

[34]  Karl Henrik Johansson,et al.  Rate of prefix-free codes in LQG control systems , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[35]  Minyue Fu,et al.  Lack of Separation Principle for Quantized Linear Quadratic Gaussian Control , 2012, IEEE Transactions on Automatic Control.

[36]  Noga Alon,et al.  A lower bound on the expected length of one-to-one codes , 1994, IEEE Trans. Inf. Theory.

[37]  Tamás Linder,et al.  On Optimal Zero-Delay Coding of Vector Markov Sources , 2013, IEEE Transactions on Information Theory.

[38]  Christoforos N. Hadjicostis,et al.  Optimal encoder and control strategies in stochastic control subject to rate constraints for channels with memory and feedback , 2011, IEEE Conference on Decision and Control and European Control Conference.

[39]  Serdar Yüksel,et al.  Jointly Optimal LQG Quantization and Control Policies for Multi-Dimensional Systems , 2014, IEEE Transactions on Automatic Control.

[40]  T. Basar,et al.  Optimal causal quantization of Markov Sources with distortion constraints , 2008, 2008 Information Theory and Applications Workshop.

[41]  Sean P. Meyn,et al.  Rationally Inattentive Control of Markov Processes , 2015, SIAM J. Control. Optim..

[42]  K. Åström Introduction to Stochastic Control Theory , 1970 .

[43]  Robin J. Evans,et al.  Stabilizability of Stochastic Linear Systems with Finite Feedback Data Rates , 2004, SIAM J. Control. Optim..

[44]  Meir Feder,et al.  On lattice quantization noise , 1996, IEEE Trans. Inf. Theory.

[45]  Imre Csiszár On the error exponent of source-channel transmission with a distortion threshold , 1982, IEEE Trans. Inf. Theory.

[46]  Demosthenis Teneketzis,et al.  On the Structure of Optimal Real-Time Encoders and Decoders in Noisy Communication , 2006, IEEE Transactions on Information Theory.

[47]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[48]  Victor Solo,et al.  Stabilization and Disturbance Attenuation Over a Gaussian Communication Channel , 2010, IEEE Transactions on Automatic Control.

[49]  Takashi Tanaka,et al.  Semidefinite representation of sequential rate-distortion function for stationary Gauss-Markov processes , 2015, 2015 IEEE Conference on Control Applications (CCA).

[50]  Robin J. Evans,et al.  Feedback Control Under Data Rate Constraints: An Overview , 2007, Proceedings of the IEEE.

[51]  Daniel Liberzon,et al.  Quantized feedback stabilization of linear systems , 2000, IEEE Trans. Autom. Control..

[52]  Tamás Linder,et al.  Optimality of Walrand-Varaiya type policies and approximation results for zero delay coding of Markov sources , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[53]  Milan S. Derpich,et al.  A Framework for Control System Design Subject to Average Data-Rate Constraints , 2011, IEEE Transactions on Automatic Control.

[54]  Sekhar Tatikonda,et al.  Stochastic linear control over a communication channel , 2004, IEEE Transactions on Automatic Control.

[55]  Anant Sahai,et al.  The Necessity and Sufficiency of Anytime Capacity for Stabilization of a Linear System Over a Noisy Communication Link—Part I: Scalar Systems , 2006, IEEE Transactions on Information Theory.

[56]  N. THOMAS GAARDER,et al.  On optimal finite-state digital transmission systems , 1982, IEEE Trans. Inf. Theory.

[57]  Aaron D. Wyner,et al.  Coding Theorems for a Discrete Source With a Fidelity CriterionInstitute of Radio Engineers, International Convention Record, vol. 7, 1959. , 1993 .

[58]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[59]  Y.-H. Kim,et al.  A Coding Theorem for a Class of Stationary Channels with Feedback , 2007, 2007 IEEE International Symposium on Information Theory.

[60]  T. Fischer,et al.  Optimal quantized control , 1982 .

[61]  Peter M. Schultheiss,et al.  Information rates of non-Gaussian processes , 1964, IEEE Trans. Inf. Theory.

[62]  Aaron D. Wyner,et al.  An Upper Bound on the Entropy Series , 1972, Inf. Control..

[63]  Tamás Linder,et al.  Causal coding of stationary sources and individual sequences with high resolution , 2006, IEEE Transactions on Information Theory.

[64]  Serdar Yüksel,et al.  Stochastic Stabilization of Noisy Linear Systems With Fixed-Rate Limited Feedback , 2010, IEEE Transactions on Automatic Control.

[65]  Meir Feder,et al.  On universal quantization by randomized uniform/lattice quantizers , 1992, IEEE Trans. Inf. Theory.

[66]  Victoria Kostina,et al.  Data compression with low distortion and finite blocklength , 2015, 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[67]  Nicola Elia,et al.  Stabilization of linear systems with limited information , 2001, IEEE Trans. Autom. Control..

[68]  A. J. Stam Some Inequalities Satisfied by the Quantities of Information of Fisher and Shannon , 1959, Inf. Control..