2.5D forward and inverse modeling for interpreting low-frequency electromagnetic measurements

We present 2.5D fast and rigorous forward and inversion algorithms for deep electromagnetic (EM) applications that include crosswell and controlled-source EM measurements. The forward algorithm is based on a finite-difference approach in which a multifrontal LU decomposition algorithm simulates multisource experiments at nearly the cost of simulating one single-source experiment for each frequency of operation. When the size of the linear system of equations is large, the use of this noniterative solver is impractical. Hence, we use the optimal grid technique to limit the number of unknowns in the forward problem. The inversion algorithm employs a regularized Gauss-Newton minimization approach with a multiplicative cost function. By using this multiplicative cost function, we do not need a priori data to determine the so-called regularization parameter in the optimization process, making the algorithm fully automated. The algorithm is equipped with two regularization cost functions that allow us to reconstruct either a smooth or a sharp conductivity image. To increase the robustness of the algorithm, we also constrain the minimization and use a line-search approach to guarantee the reduction of the cost function after each iteration. To demonstrate the pros and cons of the algorithm, we present synthetic and field data inversion results for crosswell and controlled-source EM measurements.

[1]  M. Zhdanov,et al.  Rigorous 3D inversion of marine CSEM data based on the integral equation method , 2007 .

[2]  Aria Abubakar,et al.  Finite-difference solution of the three-dimensional electromagnetic problem using divergence-free preconditioners , 2006 .

[3]  T. M. Habashy,et al.  A Generalized Material Averaging Formulation for Modelling of the Electromagnetic Fields , 2007 .

[4]  R. Mackie,et al.  Three-dimensional magnetotelluric inversion using conjugate gradients , 1993 .

[5]  Gene H. Golub,et al.  Matrix computations , 1983 .

[6]  A. Abubakar,et al.  A General Framework for Constraint Minimization for the Inversion of Electromagnetic Measurements , 2004 .

[7]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[8]  Joseph B. Keller,et al.  A Theorem on the Conductivity of a Composite Medium , 1964 .

[9]  William Rodi,et al.  Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion , 2001 .

[10]  Michel Barlaud,et al.  Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..

[11]  D. Oldenburg,et al.  NON-LINEAR INVERSION USING GENERAL MEASURES OF DATA MISFIT AND MODEL STRUCTURE , 1998 .

[12]  Tarek M. Habashy,et al.  Sensitivity analysis of crosswell electromagnetics , 1995 .

[13]  David L. Alumbaugh,et al.  Electromagnetic methods for development and production: State of the art , 1998 .

[14]  Sofia Davydycheva,et al.  A Finite Difference Scheme for Elliptic Equations with Rough Coefficients Using a Cartesian Grid Nonconforming to Interfaces , 1999 .

[15]  Paul T. Boggs,et al.  Solution Accelerators For Large-scale 3D Electromagnetic Inverse Problems , 2004 .

[16]  Svein Ellingsrud,et al.  The Meter Reader—Remote sensing of hydrocarbon layers by seabed logging (SBL): Results from a cruise offshore Angola , 2002 .

[17]  Aria Abubakar,et al.  An integral equation approach for 2.5-dimensional forward and inverse electromagnetic scattering , 2006 .

[18]  D. Dobson,et al.  An image-enhancement technique for electrical impedance tomography , 1994 .

[19]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[20]  Leonard J. Srnka,et al.  Special Section — Marine Controlled-Source Electromagnetic Methods An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration , 2007 .

[21]  P. M. Berg,et al.  Contrast Source Inversion Method: State of Art , 2001 .

[22]  Timothy A. Davis,et al.  An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .

[23]  M. J. Tompkins,et al.  Marine controlled-source electromagnetic imaging for hydrocarbon exploration: interpreting subsurface electrical properties , 2004 .

[24]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[25]  L. Knizhnerman,et al.  Spectral approach to solving three-dimensional Maxwell's diffusion equations in the time and frequency domains , 1994 .

[26]  H. F. Morrison,et al.  Crosswell electromagnetic tomography: System design considerations and field results , 1995 .

[27]  Rune Mittet,et al.  A two-step approach to depth migration of low frequency electromagnetic data. , 2005 .

[28]  Solution of 2.5‐dimensional problems using the Lanczos decomposition , 1994 .

[29]  Aria Abubakar,et al.  Three-dimensional inverse scattering applied to cross-well induction sensors , 2000, IEEE Trans. Geosci. Remote. Sens..

[30]  Vladimir Druskin,et al.  Optimal finite difference grids and rational approximations of the square root I. Elliptic problems , 2000 .

[31]  Michael S. Zhdanov,et al.  Focusing geophysical inversion images , 1999 .

[32]  Tony F. Chan,et al.  Total variation blind deconvolution , 1998, IEEE Trans. Image Process..

[33]  Lucy MacGregor,et al.  Sea Bed Logging (SBL), a new method for remote and direct identification of hydrocarbon filled layers in deepwater areas , 2002 .

[34]  T. Habashy,et al.  Rapid 2.5‐dimensional forward modeling and inversion via a new nonlinear scattering approximation , 1994 .

[35]  D. Oldenburg,et al.  METHODS FOR CALCULATING FRÉCHET DERIVATIVES AND SENSITIVITIES FOR THE NON‐LINEAR INVERSE PROBLEM: A COMPARATIVE STUDY1 , 1990 .

[36]  P. M. Berg,et al.  Extended contrast source inversion , 1999 .

[37]  Hans Erik Foss Amundsen,et al.  Subsurface hydrocarbons detected by electromagnetic sounding , 2005 .

[38]  Lucy MacGregor,et al.  Use of marine controlled‐source electromagnetic sounding for sub‐basalt exploration , 2000 .

[39]  I. V. R. Murthy The midpoint method: Magnetic interpretation of dikes and faults , 1985 .

[40]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[41]  Jinsong Chen,et al.  Integration of Marine CSEM And Seismic AVA Data For Reservoir Parameter Estimation , 2005 .

[42]  Gregory A. Newman,et al.  Three‐dimensional massively parallel electromagnetic inversion—I. Theory , 1997 .